mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-04-21 12:04:58 +00:00
Ignore
This commit is contained in:
parent
6c2e0be07d
commit
e0bffc0bf6
6 changed files with 36 additions and 396 deletions
|
@ -357,27 +357,27 @@ void RendererGL::bindTexturesToSlots() {
|
|||
}
|
||||
|
||||
glActiveTexture(GL_TEXTURE0 + 3);
|
||||
glBindTexture(GL_TEXTURE_1D_ARRAY, lightLUTTextureArray);
|
||||
// glBindTexture(GL_TEXTURE_1D_ARRAY, lightLUTTextureArray);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
}
|
||||
|
||||
void RendererGL::updateLightingLUT() {
|
||||
gpu.lightingLUTDirty = false;
|
||||
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
|
||||
// gpu.lightingLUTDirty = false;
|
||||
// std::array<u16, GPU::LightingLutSize> u16_lightinglut;
|
||||
|
||||
for (int i = 0; i < gpu.lightingLUT.size(); i++) {
|
||||
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
|
||||
u16_lightinglut[i] = value * 65535 / 4095;
|
||||
}
|
||||
// for (int i = 0; i < gpu.lightingLUT.size(); i++) {
|
||||
// uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
|
||||
// u16_lightinglut[i] = value * 65535 / 4095;
|
||||
// }
|
||||
|
||||
glActiveTexture(GL_TEXTURE0 + 3);
|
||||
glBindTexture(GL_TEXTURE_1D_ARRAY, lightLUTTextureArray);
|
||||
glTexImage2D(GL_TEXTURE_1D_ARRAY, 0, GL_R16, 256, Lights::LUT_Count, 0, GL_RED, GL_UNSIGNED_SHORT, u16_lightinglut.data());
|
||||
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
// glActiveTexture(GL_TEXTURE0 + 3);
|
||||
// glBindTexture(GL_TEXTURE_1D_ARRAY, lightLUTTextureArray);
|
||||
// glTexImage2D(GL_TEXTURE_1D_ARRAY, 0, GL_R16, 256, Lights::LUT_Count, 0, GL_RED, GL_UNSIGNED_SHORT, u16_lightinglut.data());
|
||||
// glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
// glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
// glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
// glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
// glActiveTexture(GL_TEXTURE0);
|
||||
}
|
||||
|
||||
void RendererGL::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#version 410 core
|
||||
#version 300 es
|
||||
precision mediump float;
|
||||
in vec2 UV;
|
||||
out vec4 FragColor;
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#version 410 core
|
||||
#version 300 es
|
||||
precision mediump float;
|
||||
out vec2 UV;
|
||||
|
||||
void main() {
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#version 410 core
|
||||
#version 300 es
|
||||
precision mediump float;
|
||||
|
||||
in vec3 v_tangent;
|
||||
in vec3 v_normal;
|
||||
|
@ -27,7 +28,7 @@ uniform bool u_depthmapEnable;
|
|||
uniform sampler2D u_tex0;
|
||||
uniform sampler2D u_tex1;
|
||||
uniform sampler2D u_tex2;
|
||||
uniform sampler1DArray u_tex_lighting_lut;
|
||||
// uniform sampler1DArray u_tex_lighting_lut;
|
||||
|
||||
uniform uint u_picaRegs[0x200 - 0x48];
|
||||
|
||||
|
@ -41,377 +42,12 @@ bool tevUnimplementedSourceFlag = false;
|
|||
// OpenGL ES 1.1 reference pages for TEVs (this is what the PICA200 implements):
|
||||
// https://registry.khronos.org/OpenGL-Refpages/es1.1/xhtml/glTexEnv.xml
|
||||
|
||||
vec4 tevFetchSource(uint src_id) {
|
||||
if (src_id >= 6u && src_id < 13u) {
|
||||
tevUnimplementedSourceFlag = true;
|
||||
}
|
||||
|
||||
return tevSources[src_id];
|
||||
}
|
||||
|
||||
vec4 tevGetColorAndAlphaSource(int tev_id, int src_id) {
|
||||
vec4 result;
|
||||
|
||||
vec4 colorSource = tevFetchSource((u_textureEnvSource[tev_id] >> (src_id * 4)) & 15u);
|
||||
vec4 alphaSource = tevFetchSource((u_textureEnvSource[tev_id] >> (src_id * 4 + 16)) & 15u);
|
||||
|
||||
uint colorOperand = (u_textureEnvOperand[tev_id] >> (src_id * 4)) & 15u;
|
||||
uint alphaOperand = (u_textureEnvOperand[tev_id] >> (12 + src_id * 4)) & 7u;
|
||||
|
||||
// TODO: figure out what the undocumented values do
|
||||
switch (colorOperand) {
|
||||
case 0u: result.rgb = colorSource.rgb; break; // Source color
|
||||
case 1u: result.rgb = 1.0 - colorSource.rgb; break; // One minus source color
|
||||
case 2u: result.rgb = vec3(colorSource.a); break; // Source alpha
|
||||
case 3u: result.rgb = vec3(1.0 - colorSource.a); break; // One minus source alpha
|
||||
case 4u: result.rgb = vec3(colorSource.r); break; // Source red
|
||||
case 5u: result.rgb = vec3(1.0 - colorSource.r); break; // One minus source red
|
||||
case 8u: result.rgb = vec3(colorSource.g); break; // Source green
|
||||
case 9u: result.rgb = vec3(1.0 - colorSource.g); break; // One minus source green
|
||||
case 12u: result.rgb = vec3(colorSource.b); break; // Source blue
|
||||
case 13u: result.rgb = vec3(1.0 - colorSource.b); break; // One minus source blue
|
||||
default: break;
|
||||
}
|
||||
|
||||
// TODO: figure out what the undocumented values do
|
||||
switch (alphaOperand) {
|
||||
case 0u: result.a = alphaSource.a; break; // Source alpha
|
||||
case 1u: result.a = 1.0 - alphaSource.a; break; // One minus source alpha
|
||||
case 2u: result.a = alphaSource.r; break; // Source red
|
||||
case 3u: result.a = 1.0 - alphaSource.r; break; // One minus source red
|
||||
case 4u: result.a = alphaSource.g; break; // Source green
|
||||
case 5u: result.a = 1.0 - alphaSource.g; break; // One minus source green
|
||||
case 6u: result.a = alphaSource.b; break; // Source blue
|
||||
case 7u: result.a = 1.0 - alphaSource.b; break; // One minus source blue
|
||||
default: break;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
vec4 tevCalculateCombiner(int tev_id) {
|
||||
vec4 source0 = tevGetColorAndAlphaSource(tev_id, 0);
|
||||
vec4 source1 = tevGetColorAndAlphaSource(tev_id, 1);
|
||||
vec4 source2 = tevGetColorAndAlphaSource(tev_id, 2);
|
||||
|
||||
uint colorCombine = u_textureEnvCombiner[tev_id] & 15u;
|
||||
uint alphaCombine = (u_textureEnvCombiner[tev_id] >> 16) & 15u;
|
||||
|
||||
vec4 result = vec4(1.0);
|
||||
|
||||
// TODO: figure out what the undocumented values do
|
||||
switch (colorCombine) {
|
||||
case 0u: result.rgb = source0.rgb; break; // Replace
|
||||
case 1u: result.rgb = source0.rgb * source1.rgb; break; // Modulate
|
||||
case 2u: result.rgb = min(vec3(1.0), source0.rgb + source1.rgb); break; // Add
|
||||
case 3u: result.rgb = clamp(source0.rgb + source1.rgb - 0.5, 0.0, 1.0); break; // Add signed
|
||||
case 4u: result.rgb = mix(source1.rgb, source0.rgb, source2.rgb); break; // Interpolate
|
||||
case 5u: result.rgb = max(source0.rgb - source1.rgb, 0.0); break; // Subtract
|
||||
case 6u: result.rgb = vec3(4.0 * dot(source0.rgb - 0.5, source1.rgb - 0.5)); break; // Dot3 RGB
|
||||
case 7u: result = vec4(4.0 * dot(source0.rgb - 0.5, source1.rgb - 0.5)); break; // Dot3 RGBA
|
||||
case 8u: result.rgb = min(source0.rgb * source1.rgb + source2.rgb, 1.0); break; // Multiply then add
|
||||
case 9u: result.rgb = min((source0.rgb + source1.rgb) * source2.rgb, 1.0); break; // Add then multiply
|
||||
default: break;
|
||||
}
|
||||
|
||||
if (colorCombine != 7u) { // The color combiner also writes the alpha channel in the "Dot3 RGBA" mode.
|
||||
// TODO: figure out what the undocumented values do
|
||||
// TODO: test if the alpha combiner supports all the same modes as the color combiner.
|
||||
switch (alphaCombine) {
|
||||
case 0u: result.a = source0.a; break; // Replace
|
||||
case 1u: result.a = source0.a * source1.a; break; // Modulate
|
||||
case 2u: result.a = min(1.0, source0.a + source1.a); break; // Add
|
||||
case 3u: result.a = clamp(source0.a + source1.a - 0.5, 0.0, 1.0); break; // Add signed
|
||||
case 4u: result.a = mix(source1.a, source0.a, source2.a); break; // Interpolate
|
||||
case 5u: result.a = max(0.0, source0.a - source1.a); break; // Subtract
|
||||
case 8u: result.a = min(1.0, source0.a * source1.a + source2.a); break; // Multiply then add
|
||||
case 9u: result.a = min(1.0, (source0.a + source1.a) * source2.a); break; // Add then multiply
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
|
||||
result.rgb *= float(1 << (u_textureEnvScale[tev_id] & 3u));
|
||||
result.a *= float(1 << ((u_textureEnvScale[tev_id] >> 16) & 3u));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
#define D0_LUT 0u
|
||||
#define D1_LUT 1u
|
||||
#define SP_LUT 2u
|
||||
#define FR_LUT 3u
|
||||
#define RB_LUT 4u
|
||||
#define RG_LUT 5u
|
||||
#define RR_LUT 6u
|
||||
|
||||
float lutLookup(uint lut, uint light, float value) {
|
||||
if (lut >= FR_LUT && lut <= RR_LUT) lut -= 1;
|
||||
if (lut == SP_LUT) lut = light + 8;
|
||||
return texture(u_tex_lighting_lut, vec2(value, lut)).r;
|
||||
}
|
||||
|
||||
vec3 regToColor(uint reg) {
|
||||
// Normalization scale to convert from [0...255] to [0.0...1.0]
|
||||
const float scale = 1.0 / 255.0;
|
||||
|
||||
return scale * vec3(float(bitfieldExtract(reg, 20, 8)), float(bitfieldExtract(reg, 10, 8)), float(bitfieldExtract(reg, 00, 8)));
|
||||
}
|
||||
|
||||
// Convert an arbitrary-width floating point literal to an f32
|
||||
float decodeFP(uint hex, uint E, uint M) {
|
||||
uint width = M + E + 1u;
|
||||
uint bias = 128u - (1u << (E - 1u));
|
||||
uint exponent = (hex >> M) & ((1u << E) - 1u);
|
||||
uint mantissa = hex & ((1u << M) - 1u);
|
||||
uint sign = (hex >> (E + M)) << 31u;
|
||||
|
||||
if ((hex & ((1u << (width - 1u)) - 1u)) != 0u) {
|
||||
if (exponent == (1u << E) - 1u)
|
||||
exponent = 255u;
|
||||
else
|
||||
exponent += bias;
|
||||
hex = sign | (mantissa << (23u - M)) | (exponent << 23u);
|
||||
} else {
|
||||
hex = sign;
|
||||
}
|
||||
|
||||
return uintBitsToFloat(hex);
|
||||
}
|
||||
|
||||
// Implements the following algorthm: https://mathb.in/26766
|
||||
void calcLighting(out vec4 primary_color, out vec4 secondary_color) {
|
||||
// Quaternions describe a transformation from surface-local space to eye space.
|
||||
// In surface-local space, by definition (and up to permutation) the normal vector is (0,0,1),
|
||||
// the tangent vector is (1,0,0), and the bitangent vector is (0,1,0).
|
||||
vec3 normal = normalize(v_normal);
|
||||
vec3 tangent = normalize(v_tangent);
|
||||
vec3 bitangent = normalize(v_bitangent);
|
||||
vec3 view = normalize(v_view);
|
||||
|
||||
uint GPUREG_LIGHTING_ENABLE = readPicaReg(0x008Fu);
|
||||
if (bitfieldExtract(GPUREG_LIGHTING_ENABLE, 0, 1) == 0u) {
|
||||
primary_color = secondary_color = vec4(1.0);
|
||||
return;
|
||||
}
|
||||
|
||||
uint GPUREG_LIGHTING_AMBIENT = readPicaReg(0x01C0u);
|
||||
uint GPUREG_LIGHTING_NUM_LIGHTS = (readPicaReg(0x01C2u) & 0x7u) + 1u;
|
||||
uint GPUREG_LIGHTING_LIGHT_PERMUTATION = readPicaReg(0x01D9u);
|
||||
|
||||
primary_color = vec4(vec3(0.0), 1.0);
|
||||
secondary_color = vec4(vec3(0.0), 1.0);
|
||||
|
||||
primary_color.rgb += regToColor(GPUREG_LIGHTING_AMBIENT);
|
||||
|
||||
uint GPUREG_LIGHTING_LUTINPUT_ABS = readPicaReg(0x01D0u);
|
||||
uint GPUREG_LIGHTING_LUTINPUT_SELECT = readPicaReg(0x01D1u);
|
||||
uint GPUREG_LIGHTING_CONFIG0 = readPicaReg(0x01C3u);
|
||||
uint GPUREG_LIGHTING_CONFIG1 = readPicaReg(0x01C4u);
|
||||
uint GPUREG_LIGHTING_LUTINPUT_SCALE = readPicaReg(0x01D2u);
|
||||
float d[7];
|
||||
|
||||
bool error_unimpl = false;
|
||||
|
||||
for (uint i = 0u; i < GPUREG_LIGHTING_NUM_LIGHTS; i++) {
|
||||
uint light_id = bitfieldExtract(GPUREG_LIGHTING_LIGHT_PERMUTATION, int(i * 3u), 3);
|
||||
|
||||
uint GPUREG_LIGHTi_SPECULAR0 = readPicaReg(0x0140u + 0x10u * light_id);
|
||||
uint GPUREG_LIGHTi_SPECULAR1 = readPicaReg(0x0141u + 0x10u * light_id);
|
||||
uint GPUREG_LIGHTi_DIFFUSE = readPicaReg(0x0142u + 0x10u * light_id);
|
||||
uint GPUREG_LIGHTi_AMBIENT = readPicaReg(0x0143u + 0x10u * light_id);
|
||||
uint GPUREG_LIGHTi_VECTOR_LOW = readPicaReg(0x0144u + 0x10u * light_id);
|
||||
uint GPUREG_LIGHTi_VECTOR_HIGH = readPicaReg(0x0145u + 0x10u * light_id);
|
||||
uint GPUREG_LIGHTi_CONFIG = readPicaReg(0x0149u + 0x10u * light_id);
|
||||
|
||||
vec3 light_vector = normalize(vec3(
|
||||
decodeFP(bitfieldExtract(GPUREG_LIGHTi_VECTOR_LOW, 0, 16), 5u, 10u), decodeFP(bitfieldExtract(GPUREG_LIGHTi_VECTOR_LOW, 16, 16), 5u, 10u),
|
||||
decodeFP(bitfieldExtract(GPUREG_LIGHTi_VECTOR_HIGH, 0, 16), 5u, 10u)
|
||||
));
|
||||
|
||||
vec3 half_vector;
|
||||
|
||||
// Positional Light
|
||||
if (bitfieldExtract(GPUREG_LIGHTi_CONFIG, 0, 1) == 0u) {
|
||||
// error_unimpl = true;
|
||||
half_vector = normalize(normalize(light_vector + v_view) + view);
|
||||
}
|
||||
|
||||
// Directional light
|
||||
else {
|
||||
half_vector = normalize(normalize(light_vector) + view);
|
||||
}
|
||||
|
||||
for (int c = 0; c < 7; c++) {
|
||||
if (bitfieldExtract(GPUREG_LIGHTING_CONFIG1, 16 + c, 1) == 0u) {
|
||||
uint scale_id = bitfieldExtract(GPUREG_LIGHTING_LUTINPUT_SCALE, c * 4, 3);
|
||||
float scale = float(1u << scale_id);
|
||||
if (scale_id >= 6u) scale /= 256.0;
|
||||
|
||||
uint input_id = bitfieldExtract(GPUREG_LIGHTING_LUTINPUT_SELECT, c * 4, 3);
|
||||
if (input_id == 0u)
|
||||
d[c] = dot(normal, half_vector);
|
||||
else if (input_id == 1u)
|
||||
d[c] = dot(view, half_vector);
|
||||
else if (input_id == 2u)
|
||||
d[c] = dot(normal, view);
|
||||
else if (input_id == 3u)
|
||||
d[c] = dot(light_vector, normal);
|
||||
else if (input_id == 4u) {
|
||||
uint GPUREG_LIGHTi_SPOTDIR_LOW = readPicaReg(0x0146u + 0x10u * light_id);
|
||||
uint GPUREG_LIGHTi_SPOTDIR_HIGH = readPicaReg(0x0147u + 0x10u * light_id);
|
||||
vec3 spot_light_vector = normalize(vec3(
|
||||
decodeFP(bitfieldExtract(GPUREG_LIGHTi_SPOTDIR_LOW, 0, 16), 1u, 11u),
|
||||
decodeFP(bitfieldExtract(GPUREG_LIGHTi_SPOTDIR_LOW, 16, 16), 1u, 11u),
|
||||
decodeFP(bitfieldExtract(GPUREG_LIGHTi_SPOTDIR_HIGH, 0, 16), 1u, 11u)
|
||||
));
|
||||
d[c] = dot(-light_vector, spot_light_vector); // -L dot P (aka Spotlight aka SP);
|
||||
} else if (input_id == 5u) {
|
||||
d[c] = 1.0; // TODO: cos <greek symbol> (aka CP);
|
||||
error_unimpl = true;
|
||||
} else {
|
||||
d[c] = 1.0;
|
||||
}
|
||||
|
||||
d[c] = lutLookup(uint(c), light_id, d[c] * 0.5 + 0.5) * scale;
|
||||
if (bitfieldExtract(GPUREG_LIGHTING_LUTINPUT_ABS, 2 * c, 1) != 0u) d[c] = abs(d[c]);
|
||||
} else {
|
||||
d[c] = 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
uint lookup_config = bitfieldExtract(GPUREG_LIGHTi_CONFIG, 4, 4);
|
||||
if (lookup_config == 0u) {
|
||||
d[D1_LUT] = 0.0;
|
||||
d[FR_LUT] = 0.0;
|
||||
d[RG_LUT] = d[RB_LUT] = d[RR_LUT];
|
||||
} else if (lookup_config == 1u) {
|
||||
d[D0_LUT] = 0.0;
|
||||
d[D1_LUT] = 0.0;
|
||||
d[RG_LUT] = d[RB_LUT] = d[RR_LUT];
|
||||
} else if (lookup_config == 2u) {
|
||||
d[FR_LUT] = 0.0;
|
||||
d[SP_LUT] = 0.0;
|
||||
d[RG_LUT] = d[RB_LUT] = d[RR_LUT];
|
||||
} else if (lookup_config == 3u) {
|
||||
d[SP_LUT] = 0.0;
|
||||
d[RG_LUT] = d[RB_LUT] = d[RR_LUT] = 1.0;
|
||||
} else if (lookup_config == 4u) {
|
||||
d[FR_LUT] = 0.0;
|
||||
} else if (lookup_config == 5u) {
|
||||
d[D1_LUT] = 0.0;
|
||||
} else if (lookup_config == 6u) {
|
||||
d[RG_LUT] = d[RB_LUT] = d[RR_LUT];
|
||||
}
|
||||
|
||||
float distance_factor = 1.0; // a
|
||||
float indirect_factor = 1.0; // fi
|
||||
float shadow_factor = 1.0; // o
|
||||
|
||||
float NdotL = dot(normal, light_vector); // Li dot N
|
||||
|
||||
// Two sided diffuse
|
||||
if (bitfieldExtract(GPUREG_LIGHTi_CONFIG, 1, 1) == 0u)
|
||||
NdotL = max(0.0, NdotL);
|
||||
else
|
||||
NdotL = abs(NdotL);
|
||||
|
||||
float light_factor = distance_factor * d[SP_LUT] * indirect_factor * shadow_factor;
|
||||
|
||||
primary_color.rgb += light_factor * (regToColor(GPUREG_LIGHTi_AMBIENT) + regToColor(GPUREG_LIGHTi_DIFFUSE) * NdotL);
|
||||
secondary_color.rgb += light_factor * (regToColor(GPUREG_LIGHTi_SPECULAR0) * d[D0_LUT] +
|
||||
regToColor(GPUREG_LIGHTi_SPECULAR1) * d[D1_LUT] * vec3(d[RR_LUT], d[RG_LUT], d[RB_LUT]));
|
||||
}
|
||||
uint fresnel_output1 = bitfieldExtract(GPUREG_LIGHTING_CONFIG0, 2, 1);
|
||||
uint fresnel_output2 = bitfieldExtract(GPUREG_LIGHTING_CONFIG0, 3, 1);
|
||||
|
||||
if (fresnel_output1 == 1u) primary_color.a = d[FR_LUT];
|
||||
if (fresnel_output2 == 1u) secondary_color.a = d[FR_LUT];
|
||||
|
||||
if (error_unimpl) {
|
||||
// secondary_color = primary_color = vec4(1.0, 0., 1.0, 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
// TODO: what do invalid sources and disabled textures read as?
|
||||
// And what does the "previous combiner" source read initially?
|
||||
tevSources[0] = v_colour; // Primary/vertex color
|
||||
calcLighting(tevSources[1], tevSources[2]);
|
||||
|
||||
uint textureConfig = readPicaReg(0x80u);
|
||||
vec2 tex2UV = (textureConfig & (1u << 13)) != 0u ? v_texcoord1 : v_texcoord2;
|
||||
|
||||
if ((textureConfig & 1u) != 0u) tevSources[3] = texture(u_tex0, v_texcoord0.xy);
|
||||
if ((textureConfig & 2u) != 0u) tevSources[4] = texture(u_tex1, v_texcoord1);
|
||||
if ((textureConfig & 4u) != 0u) tevSources[5] = texture(u_tex2, tex2UV);
|
||||
tevSources[13] = vec4(0.0); // Previous buffer
|
||||
tevSources[15] = v_colour; // Previous combiner
|
||||
|
||||
tevNextPreviousBuffer = v_textureEnvBufferColor;
|
||||
uint textureEnvUpdateBuffer = readPicaReg(0xE0u);
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
tevSources[14] = v_textureEnvColor[i]; // Constant color
|
||||
tevSources[15] = tevCalculateCombiner(i);
|
||||
tevSources[13] = tevNextPreviousBuffer;
|
||||
|
||||
if (i < 4) {
|
||||
if ((textureEnvUpdateBuffer & (0x100u << i)) != 0u) {
|
||||
tevNextPreviousBuffer.rgb = tevSources[15].rgb;
|
||||
}
|
||||
|
||||
if ((textureEnvUpdateBuffer & (0x1000u << i)) != 0u) {
|
||||
tevNextPreviousBuffer.a = tevSources[15].a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fragColour = tevSources[15];
|
||||
|
||||
if (tevUnimplementedSourceFlag) {
|
||||
// fragColour = vec4(1.0, 0.0, 1.0, 1.0);
|
||||
}
|
||||
// fragColour.rg = texture(u_tex_lighting_lut,vec2(gl_FragCoord.x/200.,float(int(gl_FragCoord.y/2)%24))).rr;
|
||||
|
||||
// Get original depth value by converting from [near, far] = [0, 1] to [-1, 1]
|
||||
// We do this by converting to [0, 2] first and subtracting 1 to go to [-1, 1]
|
||||
float z_over_w = gl_FragCoord.z * 2.0f - 1.0f;
|
||||
float depth = z_over_w * u_depthScale + u_depthOffset;
|
||||
|
||||
if (!u_depthmapEnable) // Divide z by w if depthmap enable == 0 (ie using W-buffering)
|
||||
depth /= gl_FragCoord.w;
|
||||
|
||||
// Write final fragment depth
|
||||
gl_FragDepth = depth;
|
||||
|
||||
// Perform alpha test
|
||||
uint alphaControl = readPicaReg(0x104u);
|
||||
if ((alphaControl & 1u) != 0u) { // Check if alpha test is on
|
||||
uint func = (alphaControl >> 4u) & 7u;
|
||||
float reference = float((alphaControl >> 8u) & 0xffu) / 255.0;
|
||||
float alpha = fragColour.a;
|
||||
|
||||
switch (func) {
|
||||
case 0u: discard; // Never pass alpha test
|
||||
case 1u: break; // Always pass alpha test
|
||||
case 2u: // Pass if equal
|
||||
if (alpha != reference) discard;
|
||||
break;
|
||||
case 3u: // Pass if not equal
|
||||
if (alpha == reference) discard;
|
||||
break;
|
||||
case 4u: // Pass if less than
|
||||
if (alpha >= reference) discard;
|
||||
break;
|
||||
case 5u: // Pass if less than or equal
|
||||
if (alpha > reference) discard;
|
||||
break;
|
||||
case 6u: // Pass if greater than
|
||||
if (alpha <= reference) discard;
|
||||
break;
|
||||
case 7u: // Pass if greater than or equal
|
||||
if (alpha < reference) discard;
|
||||
break;
|
||||
}
|
||||
if ((textureConfig & 1u) != 0u) {
|
||||
fragColour = texture(u_tex0, v_texcoord0.xy);
|
||||
} else {
|
||||
fragColour = vec4(0.0f);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
#version 410 core
|
||||
#version 300 es
|
||||
precision mediump float;
|
||||
precision mediump int;
|
||||
|
||||
layout(location = 0) in vec4 a_coords;
|
||||
layout(location = 1) in vec4 a_quaternion;
|
||||
|
@ -20,7 +22,7 @@ out vec2 v_texcoord2;
|
|||
flat out vec4 v_textureEnvColor[6];
|
||||
flat out vec4 v_textureEnvBufferColor;
|
||||
|
||||
out float gl_ClipDistance[2];
|
||||
// out float gl_ClipDistance[2];
|
||||
|
||||
// TEV uniforms
|
||||
uniform uint u_textureEnvColor[6];
|
||||
|
@ -93,6 +95,6 @@ void main() {
|
|||
);
|
||||
|
||||
// There's also another, always-on clipping plane based on vertex z
|
||||
gl_ClipDistance[0] = -a_coords.z;
|
||||
gl_ClipDistance[1] = dot(clipData, a_coords);
|
||||
// gl_ClipDistance[0] = -a_coords.z;
|
||||
// gl_ClipDistance[1] = dot(clipData, a_coords);
|
||||
}
|
||||
|
|
8
third_party/opengl/opengl.hpp
vendored
8
third_party/opengl/opengl.hpp
vendored
|
@ -520,21 +520,21 @@ namespace OpenGL {
|
|||
static void enableBlend() { glEnable(GL_BLEND); }
|
||||
static void disableBlend() { glDisable(GL_BLEND); }
|
||||
static void enableLogicOp() { glEnable(GL_COLOR_LOGIC_OP); }
|
||||
static void disableLogicOp() { glDisable(GL_COLOR_LOGIC_OP); }
|
||||
static void disableLogicOp() { /* glDisable(GL_COLOR_LOGIC_OP); */ }
|
||||
static void enableDepth() { glEnable(GL_DEPTH_TEST); }
|
||||
static void disableDepth() { glDisable(GL_DEPTH_TEST); }
|
||||
static void enableStencil() { glEnable(GL_STENCIL_TEST); }
|
||||
static void disableStencil() { glDisable(GL_STENCIL_TEST); }
|
||||
|
||||
static void enableClipPlane(GLuint index) { glEnable(GL_CLIP_DISTANCE0 + index); }
|
||||
static void disableClipPlane(GLuint index) { glDisable(GL_CLIP_DISTANCE0 + index); }
|
||||
static void enableClipPlane(GLuint index) { /* glEnable(GL_CLIP_DISTANCE0 + index); */ }
|
||||
static void disableClipPlane(GLuint index) { /* glDisable(GL_CLIP_DISTANCE0 + index); */ }
|
||||
|
||||
static void setDepthFunc(DepthFunc func) { glDepthFunc(static_cast<GLenum>(func)); }
|
||||
static void setColourMask(GLboolean r, GLboolean g, GLboolean b, GLboolean a) { glColorMask(r, g, b, a); }
|
||||
static void setDepthMask(GLboolean mask) { glDepthMask(mask); }
|
||||
|
||||
// TODO: Add a proper enum for this
|
||||
static void setLogicOp(GLenum op) { glLogicOp(op); }
|
||||
static void setLogicOp(GLenum op) { /* glLogicOp(op); */ }
|
||||
|
||||
enum Primitives {
|
||||
Triangle = GL_TRIANGLES,
|
||||
|
|
Loading…
Add table
Reference in a new issue