Merge branch 'master' of https://github.com/dolphin-emu/dolphin into dolphin-emu-master

This commit is contained in:
Nayla Hanegan 2023-12-25 20:08:08 -05:00
commit c18016e795
767 changed files with 87644 additions and 70168 deletions

View file

@ -1795,6 +1795,62 @@ void ARM64XEmitter::ADRP(ARM64Reg Rd, s64 imm)
EncodeAddressInst(1, Rd, static_cast<s32>(imm >> 12));
}
// This is using a hand-rolled algorithm. The goal is zero memory allocations, not necessarily
// the best JIT-time time complexity. (The number of moves is usually very small.)
void ARM64XEmitter::ParallelMoves(RegisterMove* begin, RegisterMove* end,
std::array<u8, 32>* source_gpr_usages)
{
// X0-X7 are used for passing arguments.
// X18-X31 are either callee saved or used for special purposes.
constexpr size_t temp_reg_begin = 8;
constexpr size_t temp_reg_end = 18;
while (begin != end)
{
bool removed_moves_during_this_loop_iteration = false;
RegisterMove* move = end;
while (move != begin)
{
RegisterMove* prev_move = move;
--move;
if ((*source_gpr_usages)[DecodeReg(move->dst)] == 0)
{
MOV(move->dst, move->src);
(*source_gpr_usages)[DecodeReg(move->src)]--;
std::move(prev_move, end, move);
--end;
removed_moves_during_this_loop_iteration = true;
}
}
if (!removed_moves_during_this_loop_iteration)
{
// We need to break a cycle using a temporary register.
size_t temp_reg = temp_reg_begin;
while ((*source_gpr_usages)[temp_reg] != 0)
{
++temp_reg;
ASSERT_MSG(COMMON, temp_reg != temp_reg_end, "Out of registers");
}
const ARM64Reg src = begin->src;
const ARM64Reg dst =
(Is64Bit(src) ? EncodeRegTo64 : EncodeRegTo32)(static_cast<ARM64Reg>(temp_reg));
MOV(dst, src);
(*source_gpr_usages)[DecodeReg(dst)] = (*source_gpr_usages)[DecodeReg(src)];
(*source_gpr_usages)[DecodeReg(src)] = 0;
std::for_each(begin, end, [src, dst](RegisterMove& move) {
if (move.src == src)
move.src = dst;
});
}
}
}
template <typename T>
void ARM64XEmitter::MOVI2RImpl(ARM64Reg Rd, T imm)
{
@ -1876,13 +1932,13 @@ void ARM64XEmitter::MOVI2RImpl(ARM64Reg Rd, T imm)
(imm & 0xFFFF'FFFF'0000'0000) | (imm >> 32),
(imm << 48) | (imm & 0x0000'FFFF'FFFF'0000) | (imm >> 48)})
{
if (LogicalImm(orr_imm, 64))
if (LogicalImm(orr_imm, GPRSize::B64))
try_base(orr_imm, Approach::ORRBase, false);
}
}
else
{
if (LogicalImm(imm, 32))
if (LogicalImm(imm, GPRSize::B32))
try_base(imm, Approach::ORRBase, false);
}
}
@ -3983,9 +4039,28 @@ void ARM64FloatEmitter::ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp)
void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (!Is64Bit(Rn))
imm &= 0xFFFFFFFF;
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
//
// Doing this here instead of in the LogicalImm constructor makes it easier
// to check if the input is all ones.
if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
imm = (imm << 32) | (imm & 0xFFFFFFFF);
}
if (imm == 0)
{
MOVZ(Rd, 0);
}
else if ((~imm) == 0)
{
if (Rd != Rn)
MOV(Rd, Rn);
}
else if (const auto result = LogicalImm(imm, GPRSize::B64))
{
AND(Rd, Rn, result);
}
@ -4001,7 +4076,29 @@ void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
if (!Is64Bit(Rn))
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
//
// Doing this here instead of in the LogicalImm constructor makes it easier
// to check if the input is all ones.
imm = (imm << 32) | (imm & 0xFFFFFFFF);
}
if (imm == 0)
{
if (Rd != Rn)
MOV(Rd, Rn);
}
else if ((~imm) == 0)
{
MOVN(Rd, 0);
}
else if (const auto result = LogicalImm(imm, GPRSize::B64))
{
ORR(Rd, Rn, result);
}
@ -4017,7 +4114,29 @@ void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
if (!Is64Bit(Rn))
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
//
// Doing this here instead of in the LogicalImm constructor makes it easier
// to check if the input is all ones.
imm = (imm << 32) | (imm & 0xFFFFFFFF);
}
if (imm == 0)
{
if (Rd != Rn)
MOV(Rd, Rn);
}
else if ((~imm) == 0)
{
MVN(Rd, Rn);
}
else if (const auto result = LogicalImm(imm, GPRSize::B64))
{
EOR(Rd, Rn, result);
}
@ -4033,7 +4152,29 @@ void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{
if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
if (!Is64Bit(Rn))
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
//
// Doing this here instead of in the LogicalImm constructor makes it easier
// to check if the input is all ones.
imm = (imm << 32) | (imm & 0xFFFFFFFF);
}
if (imm == 0)
{
ANDS(Rd, Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR,
Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR);
}
else if ((~imm) == 0)
{
ANDS(Rd, Rn, Rn);
}
else if (const auto result = LogicalImm(imm, GPRSize::B64))
{
ANDS(Rd, Rn, result);
}
@ -4069,11 +4210,24 @@ void ARM64XEmitter::AddImmediate(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool shift,
void ARM64XEmitter::ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags,
ARM64Reg scratch)
{
DEBUG_ASSERT(Is64Bit(Rd) == Is64Bit(Rn));
if (!Is64Bit(Rd))
imm &= 0xFFFFFFFFULL;
bool has_scratch = scratch != ARM64Reg::INVALID_REG;
u64 imm_neg = Is64Bit(Rd) ? u64(-s64(imm)) : u64(-s64(imm)) & 0xFFFFFFFFuLL;
bool neg_neg = negative ? false : true;
// Fast paths, aarch64 immediate instructions
// Special path for zeroes
if (imm == 0 && !flags)
{
if (Rd != Rn)
MOV(Rd, Rn);
return;
}
// Regular fast paths, aarch64 immediate instructions
// Try them all first
if (imm <= 0xFFF)
{
@ -4196,7 +4350,7 @@ bool ARM64XEmitter::TryCMPI2R(ARM64Reg Rn, u64 imm)
bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? 64 : 32))
if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? GPRSize::B64 : GPRSize::B32))
{
AND(Rd, Rn, result);
return true;
@ -4207,7 +4361,7 @@ bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? 64 : 32))
if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? GPRSize::B64 : GPRSize::B32))
{
ORR(Rd, Rn, result);
return true;
@ -4218,7 +4372,7 @@ bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{
if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? 64 : 32))
if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? GPRSize::B64 : GPRSize::B32))
{
EOR(Rd, Rn, result);
return true;

View file

@ -3,10 +3,12 @@
#pragma once
#include <array>
#include <bit>
#include <cstring>
#include <functional>
#include <optional>
#include <type_traits>
#include <utility>
#include "Common/ArmCommon.h"
@ -17,6 +19,7 @@
#include "Common/Common.h"
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#include "Common/SmallVector.h"
namespace Arm64Gen
{
@ -347,6 +350,12 @@ enum class RoundingMode
Z, // round towards zero
};
enum class GPRSize
{
B32,
B64,
};
struct FixupBranch
{
enum class Type : u32
@ -519,7 +528,7 @@ struct LogicalImm
constexpr LogicalImm(u8 r_, u8 s_, bool n_) : r(r_), s(s_), n(n_), valid(true) {}
constexpr LogicalImm(u64 value, u32 width)
constexpr LogicalImm(u64 value, GPRSize size)
{
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
@ -537,17 +546,14 @@ struct LogicalImm
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
constexpr int kWRegSizeInBits = 32;
if (width == kWRegSizeInBits)
if (size == GPRSize::B32)
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
value <<= kWRegSizeInBits;
value |= value >> kWRegSizeInBits;
value = (value << 32) | (value & 0xFFFFFFFF);
}
if (value == 0 || (~value) == 0)
@ -599,6 +605,12 @@ class ARM64XEmitter
friend class ARM64FloatEmitter;
private:
struct RegisterMove
{
ARM64Reg dst;
ARM64Reg src;
};
// Pointer to memory where code will be emitted to.
u8* m_code = nullptr;
@ -646,6 +658,10 @@ private:
[[nodiscard]] FixupBranch WriteFixupBranch();
// This function solves the "parallel moves" problem common in compilers.
// The arguments are mutated!
void ParallelMoves(RegisterMove* begin, RegisterMove* end, std::array<u8, 32>* source_gpr_usages);
template <typename T>
void MOVI2RImpl(ARM64Reg Rd, T imm);
@ -1058,6 +1074,114 @@ public:
void ABI_PushRegisters(BitSet32 registers);
void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0));
// Plain function call
void QuickCallFunction(ARM64Reg scratchreg, const void* func);
template <typename T>
void QuickCallFunction(ARM64Reg scratchreg, T func)
{
QuickCallFunction(scratchreg, (const void*)func);
}
template <typename FuncRet, typename... FuncArgs, typename... Args>
void ABI_CallFunction(FuncRet (*func)(FuncArgs...), Args... args)
{
static_assert(sizeof...(FuncArgs) == sizeof...(Args), "Wrong number of arguments");
static_assert(sizeof...(FuncArgs) <= 8, "Passing arguments on the stack is not supported");
if constexpr (!std::is_void_v<FuncRet>)
static_assert(sizeof(FuncRet) <= 16, "Large return types are not supported");
std::array<u8, 32> source_gpr_uses{};
auto check_argument = [&](auto& arg) {
using Arg = std::decay_t<decltype(arg)>;
if constexpr (std::is_same_v<Arg, ARM64Reg>)
{
ASSERT(IsGPR(arg));
source_gpr_uses[DecodeReg(arg)]++;
}
else
{
// To be more correct, we should be checking FuncArgs here rather than Args, but that's a
// lot more effort to implement. Let's just do these best-effort checks for now.
static_assert(!std::is_floating_point_v<Arg>, "Floating-point arguments are not supported");
static_assert(sizeof(Arg) <= 8, "Arguments bigger than a register are not supported");
}
};
(check_argument(args), ...);
{
Common::SmallVector<RegisterMove, sizeof...(Args)> pending_moves;
size_t i = 0;
auto handle_register_argument = [&](auto& arg) {
using Arg = std::decay_t<decltype(arg)>;
if constexpr (std::is_same_v<Arg, ARM64Reg>)
{
const ARM64Reg dst_reg =
(Is64Bit(arg) ? EncodeRegTo64 : EncodeRegTo32)(static_cast<ARM64Reg>(i));
if (dst_reg == arg)
{
// The value is already in the right register.
source_gpr_uses[DecodeReg(arg)]--;
}
else if (source_gpr_uses[i] == 0)
{
// The destination register isn't used as the source of another move.
// We can go ahead and do the move right away.
MOV(dst_reg, arg);
source_gpr_uses[DecodeReg(arg)]--;
}
else
{
// The destination register is used as the source of a move we haven't gotten to yet.
// Let's record that we need to deal with this move later.
pending_moves.emplace_back(dst_reg, arg);
}
}
++i;
};
(handle_register_argument(args), ...);
if (!pending_moves.empty())
{
ParallelMoves(pending_moves.data(), pending_moves.data() + pending_moves.size(),
&source_gpr_uses);
}
}
{
size_t i = 0;
auto handle_immediate_argument = [&](auto& arg) {
using Arg = std::decay_t<decltype(arg)>;
if constexpr (!std::is_same_v<Arg, ARM64Reg>)
{
const ARM64Reg dst_reg =
(sizeof(arg) == 8 ? EncodeRegTo64 : EncodeRegTo32)(static_cast<ARM64Reg>(i));
if constexpr (std::is_pointer_v<Arg>)
MOVP2R(dst_reg, arg);
else
MOVI2R(dst_reg, arg);
}
++i;
};
(handle_immediate_argument(args), ...);
}
QuickCallFunction(ARM64Reg::X8, func);
}
// Utility to generate a call to a std::function object.
//
// Unfortunately, calling operator() directly is undefined behavior in C++
@ -1069,23 +1193,11 @@ public:
return (*f)(args...);
}
// This function expects you to have set up the state.
// Overwrites X0 and X8
template <typename T, typename... Args>
ARM64Reg ABI_SetupLambda(const std::function<T(Args...)>* f)
template <typename FuncRet, typename... FuncArgs, typename... Args>
void ABI_CallLambdaFunction(const std::function<FuncRet(FuncArgs...)>* f, Args... args)
{
auto trampoline = &ARM64XEmitter::CallLambdaTrampoline<T, Args...>;
MOVP2R(ARM64Reg::X8, trampoline);
MOVP2R(ARM64Reg::X0, const_cast<void*>((const void*)f));
return ARM64Reg::X8;
}
// Plain function call
void QuickCallFunction(ARM64Reg scratchreg, const void* func);
template <typename T>
void QuickCallFunction(ARM64Reg scratchreg, T func)
{
QuickCallFunction(scratchreg, (const void*)func);
auto trampoline = &ARM64XEmitter::CallLambdaTrampoline<FuncRet, FuncArgs...>;
ABI_CallFunction(trampoline, f, args...);
}
};

View file

@ -0,0 +1,26 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/Assembler/AssemblerShared.h"
#include <fmt/format.h>
namespace Common::GekkoAssembler
{
std::string AssemblerError::FormatError() const
{
const char* space_char = col == 0 ? "" : " ";
std::string_view line_str = error_line;
if (line_str.back() == '\n')
{
line_str = line_str.substr(0, line_str.length() - 1);
}
return fmt::format("Error on line {0} col {1}:\n"
" {2}\n"
" {3:{4}}{5:^^{6}}\n"
"{7}",
line + 1, col + 1, line_str, space_char, col, '^', len, message);
}
} // namespace Common::GekkoAssembler

View file

@ -0,0 +1,545 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <cstddef>
#include <cstdint>
#include <string>
#include <string_view>
#include <variant>
namespace Common::GekkoAssembler
{
struct Interval
{
size_t begin;
size_t len;
constexpr size_t End() const { return begin + len; }
};
struct AssemblerError
{
std::string message;
std::string_view error_line;
size_t line;
size_t col;
size_t len;
std::string FormatError() const;
};
template <typename Tag, typename T>
using Tagged = std::pair<Tag, T>;
template <typename Tag, typename T>
constexpr const Tag& TagOf(const Tagged<Tag, T>& val)
{
return std::get<0>(val);
}
template <typename Tag, typename T>
constexpr Tag& TagOf(Tagged<Tag, T>& val)
{
return std::get<0>(val);
}
template <typename Tag, typename T>
constexpr const T& ValueOf(const Tagged<Tag, T>& val)
{
return std::get<1>(val);
}
template <typename Tag, typename T>
constexpr T& ValueOf(Tagged<Tag, T>& val)
{
return std::get<1>(val);
}
template <typename T>
using FailureOr = std::variant<AssemblerError, T>;
template <typename T>
constexpr bool IsFailure(const FailureOr<T>& var)
{
return std::holds_alternative<AssemblerError>(var);
}
template <typename T>
constexpr AssemblerError& GetFailure(FailureOr<T>& var)
{
return std::get<AssemblerError>(var);
}
template <typename T>
constexpr const AssemblerError& GetFailure(const FailureOr<T>& var)
{
return std::get<AssemblerError>(var);
}
template <typename T>
constexpr const T& GetT(const FailureOr<T>& var)
{
return std::get<T>(var);
}
template <typename T>
constexpr T& GetT(FailureOr<T>& var)
{
return std::get<T>(var);
}
enum class GekkoDirective
{
Byte,
_2byte,
_4byte,
_8byte,
Float,
Double,
Locate,
PadAlign,
Align,
Zeros,
Skip,
DefVar,
Ascii,
Asciz
};
enum class GekkoMnemonic : size_t
{
Add,
Addc,
Adde,
Addi,
Addic,
AddicDot,
Addis,
Addme,
Addze,
Divw,
Divwu,
Mulhw,
Mulhwu,
Mulli,
Mullw,
Neg,
Subf,
Subfc,
Subfe,
Subfic,
Subfme,
Subfze,
Cmp,
Cmpi,
Cmpl,
Cmpli,
And,
Andc,
AndiDot,
AndisDot,
Cntlzw,
Eqv,
Extsb,
Extsh,
Nand,
Nor,
Or,
Orc,
Ori,
Oris,
Xor,
Xori,
Xoris,
Rlwimi,
Rlwinm,
Rlwnm,
Slw,
Sraw,
Srawi,
Srw,
Fadd,
Fadds,
Fdiv,
Fdivs,
Fmul,
Fmuls,
Fres,
Frsqrte,
Fsub,
Fsubs,
Fsel,
Fmadd,
Fmadds,
Fmsub,
Fmsubs,
Fnmadd,
Fnmadds,
Fnmsub,
Fnmsubs,
Fctiw,
Fctiwz,
Frsp,
Fcmpo,
Fcmpu,
Mcrfs,
Mffs,
Mtfsb0,
Mtfsb1,
Mtfsf,
Mtfsfi,
Lbz,
Lbzu,
Lbzux,
Lbzx,
Lha,
Lhau,
Lhaux,
Lhax,
Lhz,
Lhzu,
Lhzux,
Lhzx,
Lwz,
Lwzu,
Lwzux,
Lwzx,
Stb,
Stbu,
Stbux,
Stbx,
Sth,
Sthu,
Sthux,
Sthx,
Stw,
Stwu,
Stwux,
Stwx,
Lhbrx,
Lwbrx,
Sthbrx,
Stwbrx,
Lmw,
Stmw,
Lswi,
Lswx,
Stswi,
Stswx,
Eieio,
Isync,
Lwarx,
StwcxDot,
Sync,
Lfd,
Lfdu,
Lfdux,
Lfdx,
Lfs,
Lfsu,
Lfsux,
Lfsx,
Stfd,
Stfdu,
Stfdux,
Stfdx,
Stfiwx,
Stfs,
Stfsu,
Stfsux,
Stfsx,
Fabs,
Fmr,
Fnabs,
Fneg,
B,
Bc,
Bcctr,
Bclr,
Crand,
Crandc,
Creqv,
Crnand,
Crnor,
Cror,
Crorc,
Crxor,
Mcrf,
Rfi,
Sc,
Tw,
Twi,
Mcrxr,
Mfcr,
Mfmsr,
Mfspr_nobitswap,
Mftb_nobitswap,
Mtcrf,
Mtmsr,
Mtspr_nobitswap,
Dcbf,
Dcbi,
Dcbst,
Dcbt,
Dcbtst,
Dcbz,
Icbi,
Mfsr,
Mfsrin,
Mtsr,
Mtsrin,
Tlbie,
Tlbsync,
Eciwx,
Ecowx,
Psq_lx,
Psq_stx,
Psq_lux,
Psq_stux,
Psq_l,
Psq_lu,
Psq_st,
Psq_stu,
Ps_div,
Ps_sub,
Ps_add,
Ps_sel,
Ps_res,
Ps_mul,
Ps_rsqrte,
Ps_msub,
Ps_madd,
Ps_nmsub,
Ps_nmadd,
Ps_neg,
Ps_mr,
Ps_nabs,
Ps_abs,
Ps_sum0,
Ps_sum1,
Ps_muls0,
Ps_muls1,
Ps_madds0,
Ps_madds1,
Ps_cmpu0,
Ps_cmpo0,
Ps_cmpu1,
Ps_cmpo1,
Ps_merge00,
Ps_merge01,
Ps_merge10,
Ps_merge11,
Dcbz_l,
LastMnemonic = Dcbz_l,
InvalidMnemonic,
};
enum class ExtendedGekkoMnemonic : size_t
{
Subi,
Subis,
Subic,
SubicDot,
Sub,
Subc,
Cmpwi,
Cmpw,
Cmplwi,
Cmplw,
Extlwi,
Extrwi,
Inslwi,
Insrwi,
Rotlwi,
Rotrwi,
Rotlw,
Slwi,
Srwi,
Clrlwi,
Clrrwi,
Clrlslwi,
Bt,
Bf,
Bdnz,
Bdnzt,
Bdnzf,
Bdz,
Bdzt,
Bdzf,
BtPredict,
BfPredict,
BdnzPredict,
BdnztPredict,
BdnzfPredict,
BdzPredict,
BdztPredict,
BdzfPredict,
Blr,
Btlr,
Bflr,
Bdnzlr,
Bdnztlr,
Bdnzflr,
Bdzlr,
Bdztlr,
Bdzflr,
BtlrPredict,
BflrPredict,
BdnzlrPredict,
BdnztlrPredict,
BdnzflrPredict,
BdzlrPredict,
BdztlrPredict,
BdzflrPredict,
Bctr,
Btctr,
Bfctr,
BtctrPredict,
BfctrPredict,
Blt,
Ble,
Beq,
Bge,
Bgt,
Bnl,
Bne,
Bng,
Bso,
Bns,
Bun,
Bnu,
BltPredict,
BlePredict,
BeqPredict,
BgePredict,
BgtPredict,
BnlPredict,
BnePredict,
BngPredict,
BsoPredict,
BnsPredict,
BunPredict,
BnuPredict,
Bltlr,
Blelr,
Beqlr,
Bgelr,
Bgtlr,
Bnllr,
Bnelr,
Bnglr,
Bsolr,
Bnslr,
Bunlr,
Bnulr,
BltlrPredict,
BlelrPredict,
BeqlrPredict,
BgelrPredict,
BgtlrPredict,
BnllrPredict,
BnelrPredict,
BnglrPredict,
BsolrPredict,
BnslrPredict,
BunlrPredict,
BnulrPredict,
Bltctr,
Blectr,
Beqctr,
Bgectr,
Bgtctr,
Bnlctr,
Bnectr,
Bngctr,
Bsoctr,
Bnsctr,
Bunctr,
Bnuctr,
BltctrPredict,
BlectrPredict,
BeqctrPredict,
BgectrPredict,
BgtctrPredict,
BnlctrPredict,
BnectrPredict,
BngctrPredict,
BsoctrPredict,
BnsctrPredict,
BunctrPredict,
BnuctrPredict,
Crset,
Crclr,
Crmove,
Crnot,
Twlt,
Twlti,
Twle,
Twlei,
Tweq,
Tweqi,
Twge,
Twgei,
Twgt,
Twgti,
Twnl,
Twnli,
Twne,
Twnei,
Twng,
Twngi,
Twllt,
Twllti,
Twlle,
Twllei,
Twlge,
Twlgei,
Twlgt,
Twlgti,
Twlnl,
Twlnli,
Twlng,
Twlngi,
Trap,
Mtxer,
Mfxer,
Mtlr,
Mflr,
Mtctr,
Mfctr,
Mtdsisr,
Mfdsisr,
Mtdar,
Mfdar,
Mtdec,
Mfdec,
Mtsdr1,
Mfsdr1,
Mtsrr0,
Mfsrr0,
Mtsrr1,
Mfsrr1,
Mtasr,
Mfasr,
Mtear,
Mfear,
Mttbl,
Mftbl,
Mttbu,
Mftbu,
Mtsprg,
Mfsprg,
Mtibatu,
Mfibatu,
Mtibatl,
Mfibatl,
Mtdbatu,
Mfdbatu,
Mtdbatl,
Mfdbatl,
Nop,
Li,
Lis,
La,
Mr,
Not,
Mtcr,
Mfspr,
Mftb,
Mtspr,
LastMnemonic = Mtspr,
InvalidMnemonic
};
} // namespace Common::GekkoAssembler

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,152 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <cstddef>
#include <optional>
#include <string_view>
#include <vector>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/Assembler/CaseInsensitiveDict.h"
#include "Common/CommonTypes.h"
namespace Common::GekkoAssembler::detail
{
///////////////////
// PARSER TABLES //
///////////////////
enum class ParseAlg
{
None,
Op1,
NoneOrOp1,
Op1Off1,
Op2,
Op1Or2,
Op3,
Op2Or3,
Op4,
Op5,
Op1Off1Op2,
};
struct ParseInfo
{
size_t mnemonic_index;
ParseAlg parse_algorithm;
};
// Mapping of SPRG names to values
extern const CaseInsensitiveDict<u32, '_'> sprg_map;
// Mapping of directive names to an enumeration
extern const CaseInsensitiveDict<GekkoDirective> directives_map;
// Mapping of normal Gekko mnemonics to their index and argument form
extern const CaseInsensitiveDict<ParseInfo, '.', '_'> mnemonic_tokens;
// Mapping of extended Gekko mnemonics to their index and argument form
extern const CaseInsensitiveDict<ParseInfo, '.', '_', '+', '-'> extended_mnemonic_tokens;
//////////////////////
// ASSEMBLER TABLES //
//////////////////////
constexpr size_t MAX_OPERANDS = 5;
struct OperandList
{
std::array<Tagged<Interval, u32>, MAX_OPERANDS> list;
u32 count;
bool overfill;
constexpr u32 operator[](size_t index) const { return ValueOf(list[index]); }
constexpr u32& operator[](size_t index) { return ValueOf(list[index]); }
void Insert(size_t before, u32 val);
template <typename It>
void Copy(It begin, It end)
{
count = 0;
for (auto& i : list)
{
if (begin == end)
{
break;
}
i = *begin;
begin++;
count++;
}
overfill = begin != end;
}
};
struct OperandDesc
{
u32 mask;
struct
{
u32 shift : 31;
bool is_signed : 1;
};
u32 MaxVal() const;
u32 MinVal() const;
u32 TruncBits() const;
bool Fits(u32 val) const;
u32 Fit(u32 val) const;
};
// MnemonicDesc holds the machine-code template for mnemonics
struct MnemonicDesc
{
// Initial value for a given mnemonic (opcode, func code, LK, AA, OE)
const u32 initial_value;
const u32 operand_count;
// Masks for operands
std::array<OperandDesc, MAX_OPERANDS> operand_masks;
};
// ExtendedMnemonicDesc holds the name of the mnemonic it transforms to as well as a
// transformer callback to translate the operands into the correct form for the base mnemonic
struct ExtendedMnemonicDesc
{
size_t mnemonic_index;
void (*transform_operands)(OperandList&);
};
static constexpr size_t NUM_MNEMONICS = static_cast<size_t>(GekkoMnemonic::LastMnemonic) + 1;
static constexpr size_t NUM_EXT_MNEMONICS =
static_cast<size_t>(ExtendedGekkoMnemonic::LastMnemonic) + 1;
static constexpr size_t VARIANT_PERMUTATIONS = 4;
// Table for mapping mnemonic+variants to their descriptors
extern const std::array<MnemonicDesc, NUM_MNEMONICS * VARIANT_PERMUTATIONS> mnemonics;
// Table for mapping extended mnemonic+variants to their descriptors
extern const std::array<ExtendedMnemonicDesc, NUM_EXT_MNEMONICS * VARIANT_PERMUTATIONS>
extended_mnemonics;
//////////////////
// LEXER TABLES //
//////////////////
// In place of the reliace on std::regex, DFAs will be defined for matching sufficiently complex
// tokens This gives an extra benefit of providing reasons for match failures
using TransitionF = bool (*)(char c);
using DfaEdge = std::pair<TransitionF, size_t>;
struct DfaNode
{
std::vector<DfaEdge> edges;
// If nullopt: this is a final node
// If string: invalid reason
std::optional<std::string_view> match_failure_reason;
};
// Floating point strings that will be accepted by std::stof/std::stod
// regex: [\+-]?(\d+(\.\d+)?|\.\d+)(e[\+-]?\d+)?
extern const std::vector<DfaNode> float_dfa;
// C-style strings
// regex: "([^\\\n]|\\([0-7]{1,3}|x[0-9a-fA-F]+|[^x0-7\n]))*"
extern const std::vector<DfaNode> string_dfa;
} // namespace Common::GekkoAssembler::detail

View file

@ -0,0 +1,126 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <optional>
#include <string>
#include <string_view>
#include <type_traits>
#include <utility>
#include <vector>
namespace Common::GekkoAssembler::detail
{
// Hacky implementation of a case insensitive alphanumeric trie supporting extended entries
// Standing in for std::map to support case-insensitive lookups while allowing string_views in
// lookups
template <typename V, char... ExtraMatches>
class CaseInsensitiveDict
{
public:
CaseInsensitiveDict(const std::initializer_list<std::pair<std::string_view, V>>& il)
{
for (auto&& [k, v] : il)
{
Add(k, v);
}
}
template <typename T>
V const* Find(const T& key) const
{
auto&& [last_e, it] = TryFind(key);
if (it == key.cend() && last_e->_val)
{
return &*last_e->_val;
}
return nullptr;
}
static constexpr size_t NUM_CONNS = 36 + sizeof...(ExtraMatches);
static constexpr uint32_t INVALID_CONN = static_cast<uint32_t>(-1);
private:
struct TrieEntry
{
std::array<uint32_t, 36 + sizeof...(ExtraMatches)> _conns;
std::optional<V> _val;
TrieEntry() { std::fill(_conns.begin(), _conns.end(), INVALID_CONN); }
};
constexpr size_t IndexOf(char c) const
{
size_t idx;
if (std::isalpha(c))
{
idx = std::tolower(c) - 'a';
}
else if (std::isdigit(c))
{
idx = c - '0' + 26;
}
else
{
idx = 36;
// Expands to an equivalent for loop over ExtraMatches
if constexpr (sizeof...(ExtraMatches) > 0)
{
(void)((c != ExtraMatches ? ++idx, true : false) && ...);
}
}
return idx;
}
template <typename T>
auto TryFind(const T& key) const -> std::pair<TrieEntry const*, decltype(key.cbegin())>
{
std::pair<TrieEntry const*, decltype(key.cbegin())> ret(&m_root_entry, key.cbegin());
const auto k_end = key.cend();
for (; ret.second != k_end; ret.second++)
{
const size_t idx = IndexOf(*ret.second);
if (idx >= NUM_CONNS || ret.first->_conns[idx] == INVALID_CONN)
{
break;
}
ret.first = &m_entry_pool[ret.first->_conns[idx]];
}
return ret;
}
template <typename T>
auto TryFind(const T& key) -> std::pair<TrieEntry*, decltype(key.cbegin())>
{
auto&& [e_const, it] =
const_cast<CaseInsensitiveDict<V, ExtraMatches...> const*>(this)->TryFind(key);
return {const_cast<TrieEntry*>(e_const), it};
}
void Add(std::string_view key, const V& val)
{
auto&& [last_e, it] = TryFind(key);
if (it != key.cend())
{
for (; it != key.cend(); it++)
{
const size_t idx = IndexOf(*it);
if (idx >= NUM_CONNS)
{
break;
}
last_e->_conns[idx] = static_cast<uint32_t>(m_entry_pool.size());
last_e = &m_entry_pool.emplace_back();
}
}
last_e->_val = val;
}
TrieEntry m_root_entry;
std::vector<TrieEntry> m_entry_pool;
};
} // namespace Common::GekkoAssembler::detail

View file

@ -0,0 +1,189 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/Assembler/GekkoAssembler.h"
#include <algorithm>
#include <array>
#include <string>
#include <vector>
#include <fmt/format.h>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/Assembler/AssemblerTables.h"
#include "Common/Assembler/GekkoIRGen.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
namespace Common::GekkoAssembler
{
namespace
{
using namespace Common::GekkoAssembler::detail;
FailureOr<u32> FillInstruction(const MnemonicDesc& desc, const OperandList& operands,
std::string_view inst_line)
{
// Parser shouldn't allow this to pass
ASSERT_MSG(COMMON, desc.operand_count == operands.count && !operands.overfill,
"Unexpected operand count mismatch for instruction {}. Expected {} but found {}",
inst_line, desc.operand_count, operands.overfill ? 6 : operands.count);
u32 instruction = desc.initial_value;
for (u32 i = 0; i < operands.count; i++)
{
if (!desc.operand_masks[i].Fits(operands[i]))
{
std::string message;
const u32 trunc_bits = desc.operand_masks[i].TruncBits();
if (trunc_bits == 0)
{
if (desc.operand_masks[i].is_signed)
{
message = fmt::format("{:#x} not between {:#x} and {:#x}", static_cast<s32>(operands[i]),
static_cast<s32>(desc.operand_masks[i].MinVal()),
static_cast<s32>(desc.operand_masks[i].MaxVal()));
}
else
{
message = fmt::format("{:#x} not between {:#x} and {:#x}", operands[i],
desc.operand_masks[i].MinVal(), desc.operand_masks[i].MaxVal());
}
}
else
{
if (desc.operand_masks[i].is_signed)
{
message = fmt::format("{:#x} not between {:#x} and {:#x} or not aligned to {}",
static_cast<s32>(operands[i]),
static_cast<s32>(desc.operand_masks[i].MinVal()),
static_cast<s32>(desc.operand_masks[i].MaxVal()), trunc_bits + 1);
}
else
{
message = fmt::format("{:#x} not between {:#x} and {:#x} or not aligned to {}",
operands[i], desc.operand_masks[i].MinVal(),
desc.operand_masks[i].MaxVal(), trunc_bits + 1);
}
}
return AssemblerError{std::move(message), "", 0, TagOf(operands.list[i]).begin,
TagOf(operands.list[i]).len};
}
instruction |= desc.operand_masks[i].Fit(operands[i]);
}
return instruction;
}
void AdjustOperandsForGas(GekkoMnemonic mnemonic, OperandList& ops_list)
{
switch (mnemonic)
{
case GekkoMnemonic::Cmp:
case GekkoMnemonic::Cmpl:
case GekkoMnemonic::Cmpi:
case GekkoMnemonic::Cmpli:
if (ops_list.count < 4)
{
ops_list.Insert(0, 0);
}
break;
case GekkoMnemonic::Addis:
// Because GAS wants to allow for addis and lis to work nice with absolute addresses, the
// immediate operand should also "fit" into the _UIMM field, so just turn a valid UIMM into a
// SIMM
if (ops_list[2] >= 0x8000 && ops_list[2] <= 0xffff)
{
ops_list[2] = ops_list[2] - 0x10000;
}
break;
default:
break;
}
}
} // namespace
void CodeBlock::PushBigEndian(u32 val)
{
instructions.push_back((val >> 24) & 0xff);
instructions.push_back((val >> 16) & 0xff);
instructions.push_back((val >> 8) & 0xff);
instructions.push_back(val & 0xff);
}
FailureOr<std::vector<CodeBlock>> Assemble(std::string_view instruction,
u32 current_instruction_address)
{
FailureOr<detail::GekkoIR> parse_result =
detail::ParseToIR(instruction, current_instruction_address);
if (IsFailure(parse_result))
{
return GetFailure(parse_result);
}
const auto& parsed_blocks = GetT(parse_result).blocks;
const auto& operands = GetT(parse_result).operand_pool;
std::vector<CodeBlock> out_blocks;
for (const detail::IRBlock& parsed_block : parsed_blocks)
{
CodeBlock new_block(parsed_block.block_address);
for (const detail::ChunkVariant& chunk : parsed_block.chunks)
{
if (std::holds_alternative<detail::InstChunk>(chunk))
{
for (const detail::GekkoInstruction& parsed_inst : std::get<detail::InstChunk>(chunk))
{
OperandList adjusted_ops;
ASSERT(parsed_inst.op_interval.len <= MAX_OPERANDS);
adjusted_ops.Copy(operands.begin() + parsed_inst.op_interval.begin,
operands.begin() + parsed_inst.op_interval.End());
size_t idx = parsed_inst.mnemonic_index;
if (parsed_inst.is_extended)
{
extended_mnemonics[idx].transform_operands(adjusted_ops);
idx = extended_mnemonics[idx].mnemonic_index;
}
AdjustOperandsForGas(static_cast<GekkoMnemonic>(idx >> 2), adjusted_ops);
FailureOr<u32> inst = FillInstruction(mnemonics[idx], adjusted_ops, parsed_inst.raw_text);
if (IsFailure(inst))
{
GetFailure(inst).error_line = parsed_inst.raw_text;
GetFailure(inst).line = parsed_inst.line_number;
return GetFailure(inst);
}
new_block.PushBigEndian(GetT(inst));
}
}
else if (std::holds_alternative<detail::ByteChunk>(chunk))
{
detail::ByteChunk byte_arr = std::get<detail::ByteChunk>(chunk);
new_block.instructions.insert(new_block.instructions.end(), byte_arr.begin(),
byte_arr.end());
}
else if (std::holds_alternative<detail::PadChunk>(chunk))
{
detail::PadChunk pad_len = std::get<detail::PadChunk>(chunk);
new_block.instructions.insert(new_block.instructions.end(), pad_len, 0);
}
else
{
ASSERT(false);
}
}
if (!new_block.instructions.empty())
{
out_blocks.emplace_back(std::move(new_block));
}
}
return out_blocks;
}
} // namespace Common::GekkoAssembler

View file

@ -0,0 +1,29 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string_view>
#include <vector>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/CommonTypes.h"
namespace Common::GekkoAssembler
{
struct CodeBlock
{
CodeBlock(u32 address) : block_address(address) {}
void PushBigEndian(u32 val);
u32 block_address;
std::vector<u8> instructions;
};
// Common::GekkoAssember::Assemble - Core routine for assembling Gekko/Broadway instructions
// Supports the full Gekko ISA, as well as the extended mnemonics defined by the book "PowerPC
// Microprocessor Family: The Programming Environments" The input assembly is fully parsed and
// assembled with a base address specified by the base_virtual_address
FailureOr<std::vector<CodeBlock>> Assemble(std::string_view assembly, u32 base_virtual_address);
} // namespace Common::GekkoAssembler

View file

@ -0,0 +1,832 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/Assembler/GekkoIRGen.h"
#include <functional>
#include <map>
#include <numeric>
#include <set>
#include <stack>
#include <variant>
#include <vector>
#include <fmt/format.h>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/Assembler/GekkoParser.h"
#include "Common/Assert.h"
#include "Common/BitUtils.h"
namespace Common::GekkoAssembler::detail
{
namespace
{
class GekkoIRPlugin : public ParsePlugin
{
public:
GekkoIRPlugin(GekkoIR& result, u32 base_addr)
: m_output_result(result), m_active_var(nullptr), m_operand_scan_begin(0)
{
m_active_block = &m_output_result.blocks.emplace_back(base_addr);
}
virtual ~GekkoIRPlugin() = default;
void OnDirectivePre(GekkoDirective directive) override;
void OnDirectivePost(GekkoDirective directive) override;
void OnInstructionPre(const ParseInfo& mnemonic_info, bool extended) override;
void OnInstructionPost(const ParseInfo& mnemonic_info, bool extended) override;
void OnOperandPre() override;
void OnOperandPost() override;
void OnResolvedExprPost() override;
void OnOperator(AsmOp operation) override;
void OnTerminal(Terminal type, const AssemblerToken& val) override;
void OnHiaddr(std::string_view id) override;
void OnLoaddr(std::string_view id) override;
void OnCloseParen(ParenType type) override;
void OnLabelDecl(std::string_view name) override;
void OnVarDecl(std::string_view name) override;
void PostParseAction() override;
u32 CurrentAddress() const;
std::optional<u64> LookupVar(std::string_view lab);
std::optional<u32> LookupLabel(std::string_view lab);
template <typename T>
T& GetChunk();
template <typename T>
void AddBytes(T val);
void AddStringBytes(std::string_view str, bool null_term);
void PadAlign(u32 bits);
void PadSpace(size_t space);
void StartBlock(u32 address);
void StartBlockAlign(u32 bits);
void StartInstruction(size_t mnemonic_index, bool extended);
void FinishInstruction();
void SaveOperandFixup(size_t str_left, size_t str_right);
void AddBinaryEvaluator(u32 (*evaluator)(u32, u32));
void AddUnaryEvaluator(u32 (*evaluator)(u32));
void AddAbsoluteAddressConv();
void AddLiteral(u32 lit);
void AddSymbolResolve(std::string_view sym, bool absolute);
void RunFixups();
void EvalOperatorRel(AsmOp operation);
void EvalOperatorAbs(AsmOp operation);
void EvalTerminalRel(Terminal type, const AssemblerToken& tok);
void EvalTerminalAbs(Terminal type, const AssemblerToken& tok);
private:
enum class EvalMode
{
RelAddrDoublePass,
AbsAddrSinglePass,
};
GekkoIR& m_output_result;
IRBlock* m_active_block;
GekkoInstruction m_build_inst;
u64* m_active_var;
size_t m_operand_scan_begin;
std::map<std::string, u32, std::less<>> m_labels;
std::map<std::string, u64, std::less<>> m_constants;
std::set<std::string> m_symset;
EvalMode m_evaluation_mode;
// For operand parsing
std::stack<std::function<u32()>> m_fixup_stack;
std::vector<std::function<u32()>> m_operand_fixups;
size_t m_operand_str_start;
// For directive parsing
std::vector<u64> m_eval_stack;
std::variant<std::vector<float>, std::vector<double>> m_floats_list;
std::string_view m_string_lit;
GekkoDirective m_active_directive;
};
///////////////
// OVERRIDES //
///////////////
void GekkoIRPlugin::OnDirectivePre(GekkoDirective directive)
{
m_evaluation_mode = EvalMode::AbsAddrSinglePass;
m_active_directive = directive;
m_eval_stack = std::vector<u64>{};
switch (directive)
{
case GekkoDirective::Float:
m_floats_list = std::vector<float>{};
break;
case GekkoDirective::Double:
m_floats_list = std::vector<double>{};
break;
default:
break;
}
}
void GekkoIRPlugin::OnDirectivePost(GekkoDirective directive)
{
switch (directive)
{
// .nbyte directives are handled by OnResolvedExprPost
default:
break;
case GekkoDirective::Float:
case GekkoDirective::Double:
std::visit(
[this](auto&& vec) {
for (auto&& val : vec)
{
AddBytes(val);
}
},
m_floats_list);
break;
case GekkoDirective::DefVar:
ASSERT(m_active_var != nullptr);
*m_active_var = m_eval_stack.back();
m_active_var = nullptr;
break;
case GekkoDirective::Locate:
StartBlock(static_cast<u32>(m_eval_stack.back()));
break;
case GekkoDirective::Zeros:
PadSpace(static_cast<u32>(m_eval_stack.back()));
break;
case GekkoDirective::Skip:
{
const u32 skip_len = static_cast<u32>(m_eval_stack.back());
if (skip_len > 0)
{
StartBlock(CurrentAddress() + skip_len);
}
break;
}
case GekkoDirective::PadAlign:
PadAlign(static_cast<u32>(m_eval_stack.back()));
break;
case GekkoDirective::Align:
StartBlockAlign(static_cast<u32>(m_eval_stack.back()));
break;
case GekkoDirective::Ascii:
AddStringBytes(m_string_lit, false);
break;
case GekkoDirective::Asciz:
AddStringBytes(m_string_lit, true);
break;
}
m_eval_stack = {};
}
void GekkoIRPlugin::OnInstructionPre(const ParseInfo& mnemonic_info, bool extended)
{
m_evaluation_mode = EvalMode::RelAddrDoublePass;
StartInstruction(mnemonic_info.mnemonic_index, extended);
}
void GekkoIRPlugin::OnInstructionPost(const ParseInfo&, bool)
{
FinishInstruction();
}
void GekkoIRPlugin::OnOperandPre()
{
m_operand_str_start = m_owner->lexer.ColNumber();
}
void GekkoIRPlugin::OnOperandPost()
{
SaveOperandFixup(m_operand_str_start, m_owner->lexer.ColNumber());
}
void GekkoIRPlugin::OnResolvedExprPost()
{
switch (m_active_directive)
{
case GekkoDirective::Byte:
AddBytes<u8>(static_cast<u8>(m_eval_stack.back()));
break;
case GekkoDirective::_2byte:
AddBytes<u16>(static_cast<u16>(m_eval_stack.back()));
break;
case GekkoDirective::_4byte:
AddBytes<u32>(static_cast<u32>(m_eval_stack.back()));
break;
case GekkoDirective::_8byte:
AddBytes<u64>(static_cast<u64>(m_eval_stack.back()));
break;
default:
return;
}
m_eval_stack.clear();
}
void GekkoIRPlugin::OnOperator(AsmOp operation)
{
if (m_evaluation_mode == EvalMode::RelAddrDoublePass)
{
EvalOperatorRel(operation);
}
else
{
EvalOperatorAbs(operation);
}
}
void GekkoIRPlugin::OnTerminal(Terminal type, const AssemblerToken& val)
{
if (type == Terminal::Str)
{
m_string_lit = val.token_val;
}
else if (m_evaluation_mode == EvalMode::RelAddrDoublePass)
{
EvalTerminalRel(type, val);
}
else
{
EvalTerminalAbs(type, val);
}
}
void GekkoIRPlugin::OnHiaddr(std::string_view id)
{
if (m_evaluation_mode == EvalMode::RelAddrDoublePass)
{
AddSymbolResolve(id, true);
AddLiteral(16);
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs >> rhs; });
AddLiteral(0xffff);
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs & rhs; });
}
else
{
u32 base;
if (auto lbl = LookupLabel(id); lbl)
{
base = *lbl;
}
else if (auto var = LookupVar(id); var)
{
base = *var;
}
else
{
m_owner->EmitErrorHere(fmt::format("Undefined reference to Label/Constant '{}'", id));
return;
}
m_eval_stack.push_back((base >> 16) & 0xffff);
}
}
void GekkoIRPlugin::OnLoaddr(std::string_view id)
{
if (m_evaluation_mode == EvalMode::RelAddrDoublePass)
{
AddSymbolResolve(id, true);
AddLiteral(0xffff);
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs & rhs; });
}
else
{
u32 base;
if (auto lbl = LookupLabel(id); lbl)
{
base = *lbl;
}
else if (auto var = LookupVar(id); var)
{
base = *var;
}
else
{
m_owner->EmitErrorHere(fmt::format("Undefined reference to Label/Constant '{}'", id));
return;
}
m_eval_stack.push_back(base & 0xffff);
}
}
void GekkoIRPlugin::OnCloseParen(ParenType type)
{
if (type != ParenType::RelConv)
{
return;
}
if (m_evaluation_mode == EvalMode::RelAddrDoublePass)
{
AddAbsoluteAddressConv();
}
else
{
m_eval_stack.push_back(CurrentAddress());
EvalOperatorAbs(AsmOp::Sub);
}
}
void GekkoIRPlugin::OnLabelDecl(std::string_view name)
{
const std::string name_str(name);
if (m_symset.contains(name_str))
{
m_owner->EmitErrorHere(fmt::format("Label/Constant {} is already defined", name));
return;
}
m_labels[name_str] = m_active_block->BlockEndAddress();
m_symset.insert(name_str);
}
void GekkoIRPlugin::OnVarDecl(std::string_view name)
{
const std::string name_str(name);
if (m_symset.contains(name_str))
{
m_owner->EmitErrorHere(fmt::format("Label/Constant {} is already defined", name));
return;
}
m_active_var = &m_constants[name_str];
m_symset.insert(name_str);
}
void GekkoIRPlugin::PostParseAction()
{
RunFixups();
}
//////////////////////
// HELPER FUNCTIONS //
//////////////////////
u32 GekkoIRPlugin::CurrentAddress() const
{
return m_active_block->BlockEndAddress();
}
std::optional<u64> GekkoIRPlugin::LookupVar(std::string_view var)
{
auto var_it = m_constants.find(var);
return var_it == m_constants.end() ? std::nullopt : std::optional(var_it->second);
}
std::optional<u32> GekkoIRPlugin::LookupLabel(std::string_view lab)
{
auto label_it = m_labels.find(lab);
return label_it == m_labels.end() ? std::nullopt : std::optional(label_it->second);
}
void GekkoIRPlugin::AddStringBytes(std::string_view str, bool null_term)
{
ByteChunk& bytes = GetChunk<ByteChunk>();
ConvertStringLiteral(str, &bytes);
if (null_term)
{
bytes.push_back('\0');
}
}
template <typename T>
T& GekkoIRPlugin::GetChunk()
{
if (!m_active_block->chunks.empty() && std::holds_alternative<T>(m_active_block->chunks.back()))
{
return std::get<T>(m_active_block->chunks.back());
}
return std::get<T>(m_active_block->chunks.emplace_back(T{}));
}
template <typename T>
void GekkoIRPlugin::AddBytes(T val)
{
if constexpr (std::is_integral_v<T>)
{
ByteChunk& bytes = GetChunk<ByteChunk>();
for (size_t i = sizeof(T) - 1; i > 0; i--)
{
bytes.push_back((val >> (8 * i)) & 0xff);
}
bytes.push_back(val & 0xff);
}
else if constexpr (std::is_same_v<T, float>)
{
static_assert(sizeof(double) == sizeof(u64));
AddBytes(BitCast<u32>(val));
}
else
{
// std::is_same_v<T, double>
static_assert(sizeof(double) == sizeof(u64));
AddBytes(BitCast<u64>(val));
}
}
void GekkoIRPlugin::PadAlign(u32 bits)
{
const u32 align_mask = (1 << bits) - 1;
const u32 current_addr = m_active_block->BlockEndAddress();
if (current_addr & align_mask)
{
PadChunk& current_pad = GetChunk<PadChunk>();
current_pad += (1 << bits) - (current_addr & align_mask);
}
}
void GekkoIRPlugin::PadSpace(size_t space)
{
GetChunk<PadChunk>() += space;
}
void GekkoIRPlugin::StartBlock(u32 address)
{
m_active_block = &m_output_result.blocks.emplace_back(address);
}
void GekkoIRPlugin::StartBlockAlign(u32 bits)
{
const u32 align_mask = (1 << bits) - 1;
const u32 current_addr = m_active_block->BlockEndAddress();
if (current_addr & align_mask)
{
StartBlock((1 << bits) + (current_addr & ~align_mask));
}
}
void GekkoIRPlugin::StartInstruction(size_t mnemonic_index, bool extended)
{
m_build_inst = GekkoInstruction{
.mnemonic_index = mnemonic_index,
.raw_text = m_owner->lexer.CurrentLine(),
.line_number = m_owner->lexer.LineNumber(),
.is_extended = extended,
};
m_operand_scan_begin = m_output_result.operand_pool.size();
}
void GekkoIRPlugin::AddBinaryEvaluator(u32 (*evaluator)(u32, u32))
{
std::function<u32()> rhs = std::move(m_fixup_stack.top());
m_fixup_stack.pop();
std::function<u32()> lhs = std::move(m_fixup_stack.top());
m_fixup_stack.pop();
m_fixup_stack.emplace([evaluator, lhs = std::move(lhs), rhs = std::move(rhs)]() {
return evaluator(lhs(), rhs());
});
}
void GekkoIRPlugin::AddUnaryEvaluator(u32 (*evaluator)(u32))
{
std::function<u32()> sub = std::move(m_fixup_stack.top());
m_fixup_stack.pop();
m_fixup_stack.emplace([evaluator, sub = std::move(sub)]() { return evaluator(sub()); });
}
void GekkoIRPlugin::AddAbsoluteAddressConv()
{
const u32 inst_address = m_active_block->BlockEndAddress();
std::function<u32()> sub = std::move(m_fixup_stack.top());
m_fixup_stack.pop();
m_fixup_stack.emplace([inst_address, sub = std::move(sub)] { return sub() - inst_address; });
}
void GekkoIRPlugin::AddLiteral(u32 lit)
{
m_fixup_stack.emplace([lit] { return lit; });
}
void GekkoIRPlugin::AddSymbolResolve(std::string_view sym, bool absolute)
{
const u32 source_address = m_active_block->BlockEndAddress();
AssemblerError err_on_fail = AssemblerError{
fmt::format("Unresolved symbol '{}'", sym),
m_owner->lexer.CurrentLine(),
m_owner->lexer.LineNumber(),
// Lexer should currently point to the label, as it hasn't been eaten yet
m_owner->lexer.ColNumber(),
sym.size(),
};
m_fixup_stack.emplace(
[this, sym, absolute, source_address, err_on_fail = std::move(err_on_fail)] {
auto label_it = m_labels.find(sym);
if (label_it != m_labels.end())
{
if (absolute)
{
return label_it->second;
}
return label_it->second - source_address;
}
auto var_it = m_constants.find(sym);
if (var_it != m_constants.end())
{
return static_cast<u32>(var_it->second);
}
m_owner->error = std::move(err_on_fail);
return u32{0};
});
}
void GekkoIRPlugin::SaveOperandFixup(size_t str_left, size_t str_right)
{
m_operand_fixups.emplace_back(std::move(m_fixup_stack.top()));
m_fixup_stack.pop();
m_output_result.operand_pool.emplace_back(Interval{str_left, str_right - str_left}, 0);
}
void GekkoIRPlugin::RunFixups()
{
for (size_t i = 0; i < m_operand_fixups.size(); i++)
{
ValueOf(m_output_result.operand_pool[i]) = m_operand_fixups[i]();
if (m_owner->error)
{
return;
}
}
}
void GekkoIRPlugin::FinishInstruction()
{
m_build_inst.op_interval.begin = m_operand_scan_begin;
m_build_inst.op_interval.len = m_output_result.operand_pool.size() - m_operand_scan_begin;
GetChunk<InstChunk>().emplace_back(m_build_inst);
m_operand_scan_begin = 0;
}
void GekkoIRPlugin::EvalOperatorAbs(AsmOp operation)
{
#define EVAL_BINARY_OP(OPERATOR) \
{ \
u64 rhs = m_eval_stack.back(); \
m_eval_stack.pop_back(); \
m_eval_stack.back() = m_eval_stack.back() OPERATOR rhs; \
}
switch (operation)
{
case AsmOp::Or:
EVAL_BINARY_OP(|);
break;
case AsmOp::Xor:
EVAL_BINARY_OP(^);
break;
case AsmOp::And:
EVAL_BINARY_OP(&);
break;
case AsmOp::Lsh:
EVAL_BINARY_OP(<<);
break;
case AsmOp::Rsh:
EVAL_BINARY_OP(>>);
break;
case AsmOp::Add:
EVAL_BINARY_OP(+);
break;
case AsmOp::Sub:
EVAL_BINARY_OP(-);
break;
case AsmOp::Mul:
EVAL_BINARY_OP(*);
break;
case AsmOp::Div:
EVAL_BINARY_OP(/);
break;
case AsmOp::Neg:
m_eval_stack.back() = static_cast<u32>(-static_cast<s32>(m_eval_stack.back()));
break;
case AsmOp::Not:
m_eval_stack.back() = ~m_eval_stack.back();
break;
}
#undef EVAL_BINARY_OP
#undef EVAL_UNARY_OP
}
void GekkoIRPlugin::EvalOperatorRel(AsmOp operation)
{
switch (operation)
{
case AsmOp::Or:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs | rhs; });
break;
case AsmOp::Xor:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs ^ rhs; });
break;
case AsmOp::And:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs & rhs; });
break;
case AsmOp::Lsh:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs << rhs; });
break;
case AsmOp::Rsh:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs >> rhs; });
break;
case AsmOp::Add:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs + rhs; });
break;
case AsmOp::Sub:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs - rhs; });
break;
case AsmOp::Mul:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs * rhs; });
break;
case AsmOp::Div:
AddBinaryEvaluator([](u32 lhs, u32 rhs) { return lhs / rhs; });
break;
case AsmOp::Neg:
AddUnaryEvaluator([](u32 val) { return static_cast<u32>(-static_cast<s32>(val)); });
break;
case AsmOp::Not:
AddUnaryEvaluator([](u32 val) { return ~val; });
break;
}
}
void GekkoIRPlugin::EvalTerminalRel(Terminal type, const AssemblerToken& tok)
{
switch (type)
{
case Terminal::Hex:
case Terminal::Dec:
case Terminal::Oct:
case Terminal::Bin:
case Terminal::GPR:
case Terminal::FPR:
case Terminal::SPR:
case Terminal::CRField:
case Terminal::Lt:
case Terminal::Gt:
case Terminal::Eq:
case Terminal::So:
{
std::optional<u32> val = tok.EvalToken<u32>();
ASSERT(val.has_value());
AddLiteral(*val);
break;
}
case Terminal::Dot:
AddLiteral(CurrentAddress());
break;
case Terminal::Id:
{
if (auto label_it = m_labels.find(tok.token_val); label_it != m_labels.end())
{
AddLiteral(label_it->second - CurrentAddress());
}
else if (auto var_it = m_constants.find(tok.token_val); var_it != m_constants.end())
{
AddLiteral(var_it->second);
}
else
{
AddSymbolResolve(tok.token_val, false);
}
break;
}
// Parser should disallow this from happening
default:
ASSERT(false);
break;
}
}
void GekkoIRPlugin::EvalTerminalAbs(Terminal type, const AssemblerToken& tok)
{
switch (type)
{
case Terminal::Hex:
case Terminal::Dec:
case Terminal::Oct:
case Terminal::Bin:
case Terminal::GPR:
case Terminal::FPR:
case Terminal::SPR:
case Terminal::CRField:
case Terminal::Lt:
case Terminal::Gt:
case Terminal::Eq:
case Terminal::So:
{
std::optional<u64> val = tok.EvalToken<u64>();
ASSERT(val.has_value());
m_eval_stack.push_back(*val);
break;
}
case Terminal::Flt:
{
std::visit(
[&tok](auto&& vec) {
auto opt = tok.EvalToken<typename std::decay_t<decltype(vec)>::value_type>();
ASSERT(opt.has_value());
vec.push_back(*opt);
},
m_floats_list);
break;
}
case Terminal::Dot:
m_eval_stack.push_back(static_cast<u64>(CurrentAddress()));
break;
case Terminal::Id:
{
if (auto label_it = m_labels.find(tok.token_val); label_it != m_labels.end())
{
m_eval_stack.push_back(label_it->second);
}
else if (auto var_it = m_constants.find(tok.token_val); var_it != m_constants.end())
{
m_eval_stack.push_back(var_it->second);
}
else
{
m_owner->EmitErrorHere(
fmt::format("Undefined reference to Label/Constant '{}'", tok.ValStr()));
return;
}
break;
}
// Parser should disallow this from happening
default:
ASSERT(false);
break;
}
}
} // namespace
u32 IRBlock::BlockEndAddress() const
{
return std::accumulate(chunks.begin(), chunks.end(), block_address,
[](u32 acc, const ChunkVariant& chunk) {
size_t size;
if (std::holds_alternative<InstChunk>(chunk))
{
size = std::get<InstChunk>(chunk).size() * 4;
}
else if (std::holds_alternative<ByteChunk>(chunk))
{
size = std::get<ByteChunk>(chunk).size();
}
else if (std::holds_alternative<PadChunk>(chunk))
{
size = std::get<PadChunk>(chunk);
}
else
{
ASSERT(false);
size = 0;
}
return acc + static_cast<u32>(size);
});
}
FailureOr<GekkoIR> ParseToIR(std::string_view assembly, u32 base_virtual_address)
{
GekkoIR ret;
GekkoIRPlugin plugin(ret, base_virtual_address);
ParseWithPlugin(&plugin, assembly);
if (plugin.Error())
{
return FailureOr<GekkoIR>(std::move(*plugin.Error()));
}
return std::move(ret);
}
} // namespace Common::GekkoAssembler::detail

View file

@ -0,0 +1,50 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string_view>
#include <vector>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/Assembler/GekkoLexer.h"
#include "Common/CommonTypes.h"
namespace Common::GekkoAssembler::detail
{
struct GekkoInstruction
{
// Combination of a mnemonic index and variant:
// (<GekkoMnemonic> << 2) | (<variant bits>)
size_t mnemonic_index = 0;
// Below refers to GekkoParseResult::operand_pool
Interval op_interval = Interval{0, 0};
// Literal text of this instruction
std::string_view raw_text;
size_t line_number = 0;
bool is_extended = false;
};
using InstChunk = std::vector<GekkoInstruction>;
using ByteChunk = std::vector<u8>;
using PadChunk = size_t;
using ChunkVariant = std::variant<InstChunk, ByteChunk, PadChunk>;
struct IRBlock
{
explicit IRBlock(u32 address) : block_address(address) {}
u32 BlockEndAddress() const;
std::vector<ChunkVariant> chunks;
u32 block_address;
};
struct GekkoIR
{
std::vector<IRBlock> blocks;
std::vector<Tagged<Interval, u32>> operand_pool;
};
FailureOr<GekkoIR> ParseToIR(std::string_view assembly, u32 base_virtual_address);
} // namespace Common::GekkoAssembler::detail

View file

@ -0,0 +1,794 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/Assembler/GekkoLexer.h"
#include "Common/Assert.h"
#include <iterator>
#include <numeric>
namespace Common::GekkoAssembler::detail
{
namespace
{
constexpr bool IsOctal(char c)
{
return c >= '0' && c <= '7';
}
constexpr bool IsBinary(char c)
{
return c == '0' || c == '1';
}
template <typename T>
constexpr T ConvertNib(char c)
{
if (c >= 'a' && c <= 'f')
{
return static_cast<T>(c - 'a' + 10);
}
if (c >= 'A' && c <= 'F')
{
return static_cast<T>(c - 'A' + 10);
}
return static_cast<T>(c - '0');
}
constexpr TokenType SingleCharToken(char ch)
{
switch (ch)
{
case ',':
return TokenType::Comma;
case '(':
return TokenType::Lparen;
case ')':
return TokenType::Rparen;
case '|':
return TokenType::Pipe;
case '^':
return TokenType::Caret;
case '&':
return TokenType::Ampersand;
case '+':
return TokenType::Plus;
case '-':
return TokenType::Minus;
case '*':
return TokenType::Star;
case '/':
return TokenType::Slash;
case '~':
return TokenType::Tilde;
case '@':
return TokenType::At;
case ':':
return TokenType::Colon;
case '`':
return TokenType::Grave;
case '.':
return TokenType::Dot;
case '\0':
return TokenType::Eof;
case '\n':
return TokenType::Eol;
default:
return TokenType::Invalid;
}
}
// Convert a string literal into its raw-data form
template <typename Cont>
void ConvertStringLiteral(std::string_view literal, std::back_insert_iterator<Cont> out_it)
{
for (size_t i = 1; i < literal.size() - 1;)
{
if (literal[i] == '\\')
{
++i;
if (IsOctal(literal[i]))
{
// Octal escape
char octal_escape = 0;
for (char c = literal[i]; IsOctal(c); c = literal[++i])
{
octal_escape = (octal_escape << 3) + (c - '0');
}
out_it = static_cast<u8>(octal_escape);
}
else if (literal[i] == 'x')
{
// Hex escape
char hex_escape = 0;
for (char c = literal[++i]; std::isxdigit(c); c = literal[++i])
{
hex_escape = (hex_escape << 4) + ConvertNib<char>(c);
}
out_it = static_cast<u8>(hex_escape);
}
else
{
char simple_escape;
switch (literal[i])
{
case '\'':
simple_escape = '\x27';
break;
case '"':
simple_escape = '\x22';
break;
case '?':
simple_escape = '\x3f';
break;
case '\\':
simple_escape = '\x5c';
break;
case 'a':
simple_escape = '\x07';
break;
case 'b':
simple_escape = '\x08';
break;
case 'f':
simple_escape = '\x0c';
break;
case 'n':
simple_escape = '\x0a';
break;
case 'r':
simple_escape = '\x0d';
break;
case 't':
simple_escape = '\x09';
break;
case 'v':
simple_escape = '\x0b';
break;
default:
simple_escape = literal[i];
break;
}
out_it = static_cast<u8>(simple_escape);
++i;
}
}
else
{
out_it = static_cast<u8>(literal[i]);
++i;
}
}
}
template <typename T>
std::optional<T> EvalIntegral(TokenType tp, std::string_view val)
{
constexpr auto hex_step = [](T acc, char c) { return acc << 4 | ConvertNib<T>(c); };
constexpr auto dec_step = [](T acc, char c) { return acc * 10 + (c - '0'); };
constexpr auto oct_step = [](T acc, char c) { return acc << 3 | (c - '0'); };
constexpr auto bin_step = [](T acc, char c) { return acc << 1 | (c - '0'); };
switch (tp)
{
case TokenType::HexadecimalLit:
return std::accumulate(val.begin() + 2, val.end(), T{0}, hex_step);
case TokenType::DecimalLit:
return std::accumulate(val.begin(), val.end(), T{0}, dec_step);
case TokenType::OctalLit:
return std::accumulate(val.begin() + 1, val.end(), T{0}, oct_step);
case TokenType::BinaryLit:
return std::accumulate(val.begin() + 2, val.end(), T{0}, bin_step);
case TokenType::GPR:
case TokenType::FPR:
return std::accumulate(val.begin() + 1, val.end(), T{0}, dec_step);
case TokenType::CRField:
return std::accumulate(val.begin() + 2, val.end(), T{0}, dec_step);
case TokenType::SPR:
return static_cast<T>(*sprg_map.Find(val));
case TokenType::Lt:
return T{0};
case TokenType::Gt:
return T{1};
case TokenType::Eq:
return T{2};
case TokenType::So:
return T{3};
default:
return std::nullopt;
}
}
} // namespace
void ConvertStringLiteral(std::string_view literal, std::vector<u8>* out_vec)
{
ConvertStringLiteral(literal, std::back_inserter(*out_vec));
}
std::string_view TokenTypeToStr(TokenType tp)
{
switch (tp)
{
case TokenType::GPR:
return "GPR";
case TokenType::FPR:
return "FPR";
case TokenType::SPR:
return "SPR";
case TokenType::CRField:
return "CR Field";
case TokenType::Lt:
case TokenType::Gt:
case TokenType::Eq:
case TokenType::So:
return "CR Bit";
case TokenType::Identifier:
return "Identifier";
case TokenType::StringLit:
return "String Literal";
case TokenType::DecimalLit:
return "Decimal Literal";
case TokenType::BinaryLit:
return "Binary Literal";
case TokenType::HexadecimalLit:
return "Hexadecimal Literal";
case TokenType::OctalLit:
return "Octal Literal";
case TokenType::FloatLit:
return "Float Literal";
case TokenType::Invalid:
return "Invalid";
case TokenType::Lsh:
return "<<";
case TokenType::Rsh:
return ">>";
case TokenType::Comma:
return ",";
case TokenType::Lparen:
return "(";
case TokenType::Rparen:
return ")";
case TokenType::Pipe:
return "|";
case TokenType::Caret:
return "^";
case TokenType::Ampersand:
return "&";
case TokenType::Plus:
return "+";
case TokenType::Minus:
return "-";
case TokenType::Star:
return "*";
case TokenType::Slash:
return "/";
case TokenType::Tilde:
return "~";
case TokenType::At:
return "@";
case TokenType::Colon:
return ":";
case TokenType::Grave:
return "`";
case TokenType::Dot:
return ".";
case TokenType::Eof:
return "End of File";
case TokenType::Eol:
return "End of Line";
default:
return "";
}
}
std::string_view AssemblerToken::TypeStr() const
{
return TokenTypeToStr(token_type);
}
std::string_view AssemblerToken::ValStr() const
{
switch (token_type)
{
case TokenType::Eol:
return "<EOL>";
case TokenType::Eof:
return "<EOF>";
default:
return token_val;
}
}
template <>
std::optional<float> AssemblerToken::EvalToken() const
{
if (token_type == TokenType::FloatLit)
{
return std::stof(std::string(token_val));
}
return std::nullopt;
}
template <>
std::optional<double> AssemblerToken::EvalToken() const
{
if (token_type == TokenType::FloatLit)
{
return std::stod(std::string(token_val));
}
return std::nullopt;
}
template <>
std::optional<u8> AssemblerToken::EvalToken() const
{
return EvalIntegral<u8>(token_type, token_val);
}
template <>
std::optional<u16> AssemblerToken::EvalToken() const
{
return EvalIntegral<u16>(token_type, token_val);
}
template <>
std::optional<u32> AssemblerToken::EvalToken() const
{
return EvalIntegral<u32>(token_type, token_val);
}
template <>
std::optional<u64> AssemblerToken::EvalToken() const
{
return EvalIntegral<u64>(token_type, token_val);
}
size_t Lexer::LineNumber() const
{
return m_lexed_tokens.empty() ? m_pos.line : TagOf(m_lexed_tokens.front()).line;
}
size_t Lexer::ColNumber() const
{
return m_lexed_tokens.empty() ? m_pos.col : TagOf(m_lexed_tokens.front()).col;
}
std::string_view Lexer::CurrentLine() const
{
const size_t line_index =
m_lexed_tokens.empty() ? m_pos.index : TagOf(m_lexed_tokens.front()).index;
size_t begin_index = line_index == 0 ? 0 : line_index - 1;
for (; begin_index > 0; begin_index--)
{
if (m_lex_string[begin_index] == '\n')
{
begin_index++;
break;
}
}
size_t end_index = begin_index;
for (; end_index < m_lex_string.size(); end_index++)
{
if (m_lex_string[end_index] == '\n')
{
end_index++;
break;
}
}
return m_lex_string.substr(begin_index, end_index - begin_index);
}
void Lexer::SetIdentifierMatchRule(IdentifierMatchRule set)
{
FeedbackTokens();
m_match_rule = set;
}
const Tagged<CursorPosition, AssemblerToken>& Lexer::LookaheadTagRef(size_t num_fwd) const
{
while (m_lexed_tokens.size() < num_fwd)
{
LookaheadRef();
}
return m_lexed_tokens[num_fwd];
}
AssemblerToken Lexer::Lookahead() const
{
if (m_lexed_tokens.empty())
{
CursorPosition pos_pre = m_pos;
m_lexed_tokens.emplace_back(pos_pre, LexSingle());
}
return ValueOf(m_lexed_tokens.front());
}
const AssemblerToken& Lexer::LookaheadRef() const
{
if (m_lexed_tokens.empty())
{
CursorPosition pos_pre = m_pos;
m_lexed_tokens.emplace_back(pos_pre, LexSingle());
}
return ValueOf(m_lexed_tokens.front());
}
TokenType Lexer::LookaheadType() const
{
return LookaheadRef().token_type;
}
AssemblerToken Lexer::LookaheadFloat() const
{
FeedbackTokens();
SkipWs();
CursorPosition pos_pre = m_pos;
ScanStart();
std::optional<std::string_view> failure_reason = RunDfa(float_dfa);
// Special case: lex at least a single char for no matches for errors to make sense
if (m_scan_pos.index == pos_pre.index)
{
Step();
}
std::string_view tok_str = ScanFinishOut();
AssemblerToken tok;
if (!failure_reason)
{
tok = AssemblerToken{
TokenType::FloatLit,
tok_str,
"",
Interval{0, 0},
};
}
else
{
tok = AssemblerToken{
TokenType::Invalid,
tok_str,
*failure_reason,
Interval{0, tok_str.length()},
};
}
m_lexed_tokens.emplace_back(pos_pre, tok);
return tok;
}
void Lexer::Eat()
{
if (m_lexed_tokens.empty())
{
LexSingle();
}
else
{
m_lexed_tokens.pop_front();
}
}
void Lexer::EatAndReset()
{
Eat();
SetIdentifierMatchRule(IdentifierMatchRule::Typical);
}
std::optional<std::string_view> Lexer::RunDfa(const std::vector<DfaNode>& dfa) const
{
size_t dfa_index = 0;
bool transition_found;
do
{
transition_found = false;
if (Peek() == '\0')
{
break;
}
const DfaNode& n = dfa[dfa_index];
for (auto&& edge : n.edges)
{
if (edge.first(Peek()))
{
transition_found = true;
dfa_index = edge.second;
break;
}
}
if (transition_found)
{
Step();
}
} while (transition_found);
return dfa[dfa_index].match_failure_reason;
}
void Lexer::SkipWs() const
{
ScanStart();
for (char c = Peek(); std::isspace(c) && c != '\n'; c = Step().Peek())
{
}
if (Peek() == '#')
{
while (Peek() != '\n' && Peek() != '\0')
{
Step();
}
}
ScanFinish();
}
void Lexer::FeedbackTokens() const
{
if (m_lexed_tokens.empty())
{
return;
}
m_pos = m_scan_pos = TagOf(m_lexed_tokens.front());
m_lexed_tokens.clear();
}
bool Lexer::IdentifierHeadExtra(char h) const
{
switch (m_match_rule)
{
case IdentifierMatchRule::Typical:
case IdentifierMatchRule::Mnemonic:
return false;
case IdentifierMatchRule::Directive:
return std::isdigit(h);
}
return false;
}
bool Lexer::IdentifierExtra(char c) const
{
switch (m_match_rule)
{
case IdentifierMatchRule::Typical:
case IdentifierMatchRule::Directive:
return false;
case IdentifierMatchRule::Mnemonic:
return c == '+' || c == '-' || c == '.';
}
return false;
}
void Lexer::ScanStart() const
{
m_scan_pos = m_pos;
}
void Lexer::ScanFinish() const
{
m_pos = m_scan_pos;
}
std::string_view Lexer::ScanFinishOut() const
{
const size_t start = m_pos.index;
m_pos = m_scan_pos;
return m_lex_string.substr(start, m_scan_pos.index - start);
}
char Lexer::Peek() const
{
if (m_scan_pos.index >= m_lex_string.length())
{
return 0;
}
return m_lex_string[m_scan_pos.index];
}
const Lexer& Lexer::Step() const
{
if (m_scan_pos.index >= m_lex_string.length())
{
return *this;
}
if (Peek() == '\n')
{
m_scan_pos.line++;
m_scan_pos.col = 0;
}
else
{
m_scan_pos.col++;
}
m_scan_pos.index++;
return *this;
}
TokenType Lexer::LexStringLit(std::string_view& invalid_reason, Interval& invalid_region) const
{
// The open quote has alread been matched
const size_t string_start = m_scan_pos.index - 1;
TokenType token_type = TokenType::StringLit;
std::optional<std::string_view> failure_reason = RunDfa(string_dfa);
if (failure_reason)
{
token_type = TokenType::Invalid;
invalid_reason = *failure_reason;
invalid_region = Interval{0, m_scan_pos.index - string_start};
}
return token_type;
}
TokenType Lexer::ClassifyAlnum() const
{
const std::string_view alnum = m_lex_string.substr(m_pos.index, m_scan_pos.index - m_pos.index);
constexpr auto valid_regnum = [](std::string_view rn) {
if (rn.length() == 1 && std::isdigit(rn[0]))
{
return true;
}
else if (rn.length() == 2 && std::isdigit(rn[0]) && std::isdigit(rn[1]))
{
if (rn[0] == '1' || rn[0] == '2')
{
return true;
}
if (rn[0] == '3')
{
return rn[1] <= '2';
}
}
return false;
};
constexpr auto eq_nocase = [](std::string_view str, std::string_view lwr) {
auto it_l = str.cbegin(), it_r = lwr.cbegin();
for (; it_l != str.cend() && it_r != lwr.cend(); it_l++, it_r++)
{
if (std::tolower(*it_l) != *it_r)
{
return false;
}
}
return it_l == str.end() && it_r == lwr.end();
};
if (std::tolower(alnum[0]) == 'r' && valid_regnum(alnum.substr(1)))
{
return TokenType::GPR;
}
else if (std::tolower(alnum[0]) == 'f' && valid_regnum(alnum.substr(1)))
{
return TokenType::FPR;
}
else if (alnum.length() == 3 && eq_nocase(alnum.substr(0, 2), "cr") && alnum[2] >= '0' &&
alnum[2] <= '7')
{
return TokenType::CRField;
}
else if (eq_nocase(alnum, "lt"))
{
return TokenType::Lt;
}
else if (eq_nocase(alnum, "gt"))
{
return TokenType::Gt;
}
else if (eq_nocase(alnum, "eq"))
{
return TokenType::Eq;
}
else if (eq_nocase(alnum, "so"))
{
return TokenType::So;
}
else if (sprg_map.Find(alnum) != nullptr)
{
return TokenType::SPR;
}
return TokenType::Identifier;
}
AssemblerToken Lexer::LexSingle() const
{
SkipWs();
ScanStart();
const char h = Peek();
TokenType token_type;
std::string_view invalid_reason = "";
Interval invalid_region = Interval{0, 0};
Step();
if (std::isalpha(h) || h == '_' || IdentifierHeadExtra(h))
{
for (char c = Peek(); std::isalnum(c) || c == '_' || IdentifierExtra(c); c = Step().Peek())
{
}
token_type = ClassifyAlnum();
}
else if (h == '"')
{
token_type = LexStringLit(invalid_reason, invalid_region);
}
else if (h == '0')
{
const char imm_type = Peek();
if (imm_type == 'x')
{
token_type = TokenType::HexadecimalLit;
Step();
for (char c = Peek(); std::isxdigit(c); c = Step().Peek())
{
}
}
else if (imm_type == 'b')
{
token_type = TokenType::BinaryLit;
Step();
for (char c = Peek(); IsBinary(c); c = Step().Peek())
{
}
}
else if (IsOctal(imm_type))
{
token_type = TokenType::OctalLit;
for (char c = Peek(); IsOctal(c); c = Step().Peek())
{
}
}
else
{
token_type = TokenType::DecimalLit;
}
}
else if (std::isdigit(h))
{
for (char c = Peek(); std::isdigit(c); c = Step().Peek())
{
}
token_type = TokenType::DecimalLit;
}
else if (h == '<' || h == '>')
{
// Special case for two-character operators
const char second_ch = Peek();
if (second_ch == h)
{
Step();
token_type = second_ch == '<' ? TokenType::Lsh : TokenType::Rsh;
}
else
{
token_type = TokenType::Invalid;
invalid_reason = "Unrecognized character";
invalid_region = Interval{0, 1};
}
}
else
{
token_type = SingleCharToken(h);
if (token_type == TokenType::Invalid)
{
invalid_reason = "Unrecognized character";
invalid_region = Interval{0, 1};
}
}
AssemblerToken new_tok = {token_type, ScanFinishOut(), invalid_reason, invalid_region};
SkipWs();
return new_tok;
}
} // namespace Common::GekkoAssembler::detail

View file

@ -0,0 +1,188 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <algorithm>
#include <array>
#include <deque>
#include <optional>
#include <string_view>
#include <type_traits>
#include <vector>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/Assembler/AssemblerTables.h"
#include "Common/CommonTypes.h"
namespace Common::GekkoAssembler::detail
{
void ConvertStringLiteral(std::string_view literal, std::vector<u8>* out_vec);
enum class TokenType
{
Invalid,
Identifier,
StringLit,
HexadecimalLit,
DecimalLit,
OctalLit,
BinaryLit,
FloatLit,
GPR,
FPR,
CRField,
SPR,
Lt,
Gt,
Eq,
So,
// EOL signifies boundaries between instructions, a la ';'
Eol,
Eof,
Dot,
Colon,
Comma,
Lparen,
Rparen,
Pipe,
Caret,
Ampersand,
Lsh,
Rsh,
Plus,
Minus,
Star,
Slash,
Tilde,
Grave,
At,
OperatorBegin = Dot,
LastToken = At,
};
std::string_view TokenTypeToStr(TokenType);
struct AssemblerToken
{
TokenType token_type;
std::string_view token_val;
std::string_view invalid_reason;
// Within an invalid token, specifies the erroneous region
Interval invalid_region;
std::string_view TypeStr() const;
std::string_view ValStr() const;
// Supported Templates:
// u8, u16, u32, u64, float, double
template <typename T>
std::optional<T> EvalToken() const;
};
struct CursorPosition
{
size_t index = 0;
size_t line = 0;
size_t col = 0;
};
class Lexer
{
public:
enum class IdentifierMatchRule
{
Typical,
Mnemonic, // Mnemonics can contain +, -, or . to specify branch prediction rules and link bit
Directive, // Directives can start with a digit
};
public:
explicit Lexer(std::string_view str)
: m_lex_string(str), m_match_rule(IdentifierMatchRule::Typical)
{
}
size_t LineNumber() const;
size_t ColNumber() const;
std::string_view CurrentLine() const;
// Since there's only one place floats get lexed, it's 'okay' to have an explicit
// "lex a float token" function
void SetIdentifierMatchRule(IdentifierMatchRule set);
const Tagged<CursorPosition, AssemblerToken>& LookaheadTagRef(size_t num_fwd) const;
AssemblerToken Lookahead() const;
const AssemblerToken& LookaheadRef() const;
TokenType LookaheadType() const;
// Since there's only one place floats get lexed, it's 'okay' to have an explicit
// "lex a float token" function
AssemblerToken LookaheadFloat() const;
void Eat();
void EatAndReset();
template <size_t N>
void LookaheadTaggedN(std::array<Tagged<CursorPosition, AssemblerToken>, N>* tokens_out) const
{
const size_t filled_amt = std::min(m_lexed_tokens.size(), N);
std::copy_n(m_lexed_tokens.begin(), filled_amt, tokens_out->begin());
std::generate_n(tokens_out->begin() + filled_amt, N - filled_amt, [this] {
CursorPosition p = m_pos;
return m_lexed_tokens.emplace_back(p, LexSingle());
});
}
template <size_t N>
void LookaheadN(std::array<AssemblerToken, N>* tokens_out) const
{
const size_t filled_amt = std::min(m_lexed_tokens.size(), N);
auto _it = m_lexed_tokens.begin();
std::generate_n(tokens_out->begin(), filled_amt, [&_it] { return ValueOf(*_it++); });
std::generate_n(tokens_out->begin() + filled_amt, N - filled_amt, [this] {
CursorPosition p = m_pos;
return ValueOf(m_lexed_tokens.emplace_back(p, LexSingle()));
});
}
template <size_t N>
void EatN()
{
size_t consumed = 0;
while (m_lexed_tokens.size() > 0 && consumed < N)
{
m_lexed_tokens.pop_front();
consumed++;
}
for (size_t i = consumed; i < N; i++)
{
LexSingle();
}
}
private:
std::optional<std::string_view> RunDfa(const std::vector<DfaNode>& dfa) const;
void SkipWs() const;
void FeedbackTokens() const;
bool IdentifierHeadExtra(char h) const;
bool IdentifierExtra(char c) const;
void ScanStart() const;
void ScanFinish() const;
std::string_view ScanFinishOut() const;
char Peek() const;
const Lexer& Step() const;
TokenType LexStringLit(std::string_view& invalid_reason, Interval& invalid_region) const;
TokenType ClassifyAlnum() const;
AssemblerToken LexSingle() const;
std::string_view m_lex_string;
mutable CursorPosition m_pos;
mutable CursorPosition m_scan_pos;
mutable std::deque<Tagged<CursorPosition, AssemblerToken>> m_lexed_tokens;
IdentifierMatchRule m_match_rule;
};
} // namespace Common::GekkoAssembler::detail

View file

@ -0,0 +1,885 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/Assembler/GekkoParser.h"
#include <algorithm>
#include <array>
#include <functional>
#include <fmt/format.h>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/Assembler/AssemblerTables.h"
#include "Common/Assembler/GekkoLexer.h"
#include "Common/Assert.h"
namespace Common::GekkoAssembler::detail
{
namespace
{
bool MatchOperandFirst(const AssemblerToken& tok)
{
switch (tok.token_type)
{
case TokenType::Minus:
case TokenType::Tilde:
case TokenType::Lparen:
case TokenType::Grave:
case TokenType::Identifier:
case TokenType::DecimalLit:
case TokenType::OctalLit:
case TokenType::HexadecimalLit:
case TokenType::BinaryLit:
case TokenType::Dot:
return true;
default:
return false;
}
}
void ParseImm(ParseState* state)
{
AssemblerToken tok = state->lexer.Lookahead();
switch (tok.token_type)
{
case TokenType::HexadecimalLit:
state->plugin.OnTerminal(Terminal::Hex, tok);
break;
case TokenType::DecimalLit:
state->plugin.OnTerminal(Terminal::Dec, tok);
break;
case TokenType::OctalLit:
state->plugin.OnTerminal(Terminal::Oct, tok);
break;
case TokenType::BinaryLit:
state->plugin.OnTerminal(Terminal::Bin, tok);
break;
default:
state->EmitErrorHere(fmt::format("Invalid {} with value '{}'", tok.TypeStr(), tok.ValStr()));
return;
}
if (state->error)
{
return;
}
state->lexer.Eat();
}
void ParseId(ParseState* state)
{
AssemblerToken tok = state->lexer.Lookahead();
if (tok.token_type == TokenType::Identifier)
{
state->plugin.OnTerminal(Terminal::Id, tok);
if (state->error)
{
return;
}
state->lexer.Eat();
}
else
{
state->EmitErrorHere(fmt::format("Expected an identifier, but found '{}'", tok.ValStr()));
}
}
void ParseIdLocation(ParseState* state)
{
std::array<AssemblerToken, 3> toks;
state->lexer.LookaheadN(&toks);
if (toks[1].token_type == TokenType::At)
{
if (toks[2].token_val == "ha")
{
state->plugin.OnHiaddr(toks[0].token_val);
if (state->error)
{
return;
}
state->lexer.EatN<3>();
return;
}
else if (toks[2].token_val == "l")
{
state->plugin.OnLoaddr(toks[0].token_val);
if (state->error)
{
return;
}
state->lexer.EatN<3>();
return;
}
}
ParseId(state);
}
void ParsePpcBuiltin(ParseState* state)
{
AssemblerToken tok = state->lexer.Lookahead();
switch (tok.token_type)
{
case TokenType::GPR:
state->plugin.OnTerminal(Terminal::GPR, tok);
break;
case TokenType::FPR:
state->plugin.OnTerminal(Terminal::FPR, tok);
break;
case TokenType::SPR:
state->plugin.OnTerminal(Terminal::SPR, tok);
break;
case TokenType::CRField:
state->plugin.OnTerminal(Terminal::CRField, tok);
break;
case TokenType::Lt:
state->plugin.OnTerminal(Terminal::Lt, tok);
break;
case TokenType::Gt:
state->plugin.OnTerminal(Terminal::Gt, tok);
break;
case TokenType::Eq:
state->plugin.OnTerminal(Terminal::Eq, tok);
break;
case TokenType::So:
state->plugin.OnTerminal(Terminal::So, tok);
break;
default:
state->EmitErrorHere(
fmt::format("Unexpected token '{}' in ppc builtin", state->lexer.LookaheadRef().ValStr()));
break;
}
if (state->error)
{
return;
}
state->lexer.Eat();
}
void ParseBaseexpr(ParseState* state)
{
TokenType tok = state->lexer.LookaheadType();
switch (tok)
{
case TokenType::HexadecimalLit:
case TokenType::DecimalLit:
case TokenType::OctalLit:
case TokenType::BinaryLit:
ParseImm(state);
break;
case TokenType::Identifier:
ParseIdLocation(state);
break;
case TokenType::GPR:
case TokenType::FPR:
case TokenType::SPR:
case TokenType::CRField:
case TokenType::Lt:
case TokenType::Gt:
case TokenType::Eq:
case TokenType::So:
ParsePpcBuiltin(state);
break;
case TokenType::Dot:
state->plugin.OnTerminal(Terminal::Dot, state->lexer.Lookahead());
if (state->error)
{
return;
}
state->lexer.Eat();
break;
default:
state->EmitErrorHere(
fmt::format("Unexpected token '{}' in expression", state->lexer.LookaheadRef().ValStr()));
break;
}
}
void ParseBitor(ParseState* state);
void ParseParen(ParseState* state)
{
if (state->HasToken(TokenType::Lparen))
{
state->plugin.OnOpenParen(ParenType::Normal);
if (state->error)
{
return;
}
state->lexer.Eat();
ParseBitor(state);
if (state->error)
{
return;
}
if (state->HasToken(TokenType::Rparen))
{
state->plugin.OnCloseParen(ParenType::Normal);
}
state->ParseToken(TokenType::Rparen);
}
else if (state->HasToken(TokenType::Grave))
{
state->plugin.OnOpenParen(ParenType::RelConv);
state->lexer.Eat();
ParseBitor(state);
if (state->error)
{
return;
}
if (state->HasToken(TokenType::Grave))
{
state->plugin.OnCloseParen(ParenType::RelConv);
}
state->ParseToken(TokenType::Grave);
}
else
{
ParseBaseexpr(state);
}
}
void ParseUnary(ParseState* state)
{
TokenType tok = state->lexer.LookaheadType();
if (tok == TokenType::Minus || tok == TokenType::Tilde)
{
state->lexer.Eat();
ParseUnary(state);
if (state->error)
{
return;
}
if (tok == TokenType::Minus)
{
state->plugin.OnOperator(AsmOp::Neg);
}
else
{
state->plugin.OnOperator(AsmOp::Not);
}
}
else
{
ParseParen(state);
}
}
void ParseMultiplication(ParseState* state)
{
ParseUnary(state);
if (state->error)
{
return;
}
TokenType tok = state->lexer.LookaheadType();
while (tok == TokenType::Star || tok == TokenType::Slash)
{
state->lexer.Eat();
ParseUnary(state);
if (state->error)
{
return;
}
if (tok == TokenType::Star)
{
state->plugin.OnOperator(AsmOp::Mul);
}
else
{
state->plugin.OnOperator(AsmOp::Div);
}
tok = state->lexer.LookaheadType();
}
}
void ParseAddition(ParseState* state)
{
ParseMultiplication(state);
if (state->error)
{
return;
}
TokenType tok = state->lexer.LookaheadType();
while (tok == TokenType::Plus || tok == TokenType::Minus)
{
state->lexer.Eat();
ParseMultiplication(state);
if (state->error)
{
return;
}
if (tok == TokenType::Plus)
{
state->plugin.OnOperator(AsmOp::Add);
}
else
{
state->plugin.OnOperator(AsmOp::Sub);
}
tok = state->lexer.LookaheadType();
}
}
void ParseShift(ParseState* state)
{
ParseAddition(state);
if (state->error)
{
return;
}
TokenType tok = state->lexer.LookaheadType();
while (tok == TokenType::Lsh || tok == TokenType::Rsh)
{
state->lexer.Eat();
ParseAddition(state);
if (state->error)
{
return;
}
if (tok == TokenType::Lsh)
{
state->plugin.OnOperator(AsmOp::Lsh);
}
else
{
state->plugin.OnOperator(AsmOp::Rsh);
}
tok = state->lexer.LookaheadType();
}
}
void ParseBitand(ParseState* state)
{
ParseShift(state);
if (state->error)
{
return;
}
while (state->HasToken(TokenType::Ampersand))
{
state->lexer.Eat();
ParseShift(state);
if (state->error)
{
return;
}
state->plugin.OnOperator(AsmOp::And);
}
}
void ParseBitxor(ParseState* state)
{
ParseBitand(state);
if (state->error)
{
return;
}
while (state->HasToken(TokenType::Caret))
{
state->lexer.Eat();
ParseBitand(state);
if (state->error)
{
return;
}
state->plugin.OnOperator(AsmOp::Xor);
}
}
void ParseBitor(ParseState* state)
{
ParseBitxor(state);
if (state->error)
{
return;
}
while (state->HasToken(TokenType::Pipe))
{
state->lexer.Eat();
ParseBitxor(state);
if (state->error)
{
return;
}
state->plugin.OnOperator(AsmOp::Or);
}
}
void ParseOperand(ParseState* state)
{
state->plugin.OnOperandPre();
ParseBitor(state);
if (state->error)
{
return;
}
state->plugin.OnOperandPost();
}
void ParseOperandList(ParseState* state, ParseAlg alg)
{
if (alg == ParseAlg::None)
{
return;
}
if (alg == ParseAlg::NoneOrOp1)
{
if (MatchOperandFirst(state->lexer.Lookahead()))
{
ParseOperand(state);
}
return;
}
enum ParseStep
{
_Operand,
_Comma,
_Lparen,
_Rparen,
_OptComma
};
std::vector<ParseStep> steps;
switch (alg)
{
case ParseAlg::Op1:
steps = {_Operand};
break;
case ParseAlg::Op1Or2:
steps = {_Operand, _OptComma, _Operand};
break;
case ParseAlg::Op2Or3:
steps = {_Operand, _Comma, _Operand, _OptComma, _Operand};
break;
case ParseAlg::Op1Off1:
steps = {_Operand, _Comma, _Operand, _Lparen, _Operand, _Rparen};
break;
case ParseAlg::Op2:
steps = {_Operand, _Comma, _Operand};
break;
case ParseAlg::Op3:
steps = {_Operand, _Comma, _Operand, _Comma, _Operand};
break;
case ParseAlg::Op4:
steps = {_Operand, _Comma, _Operand, _Comma, _Operand, _Comma, _Operand};
break;
case ParseAlg::Op5:
steps = {_Operand, _Comma, _Operand, _Comma, _Operand, _Comma, _Operand, _Comma, _Operand};
break;
case ParseAlg::Op1Off1Op2:
steps = {_Operand, _Comma, _Operand, _Lparen, _Operand,
_Rparen, _Comma, _Operand, _Comma, _Operand};
break;
default:
ASSERT(false);
return;
}
for (ParseStep step : steps)
{
bool stop_parse = false;
switch (step)
{
case _Operand:
ParseOperand(state);
break;
case _Comma:
state->ParseToken(TokenType::Comma);
break;
case _Lparen:
state->ParseToken(TokenType::Lparen);
break;
case _Rparen:
state->ParseToken(TokenType::Rparen);
break;
case _OptComma:
if (state->HasToken(TokenType::Comma))
{
state->ParseToken(TokenType::Comma);
}
else
{
stop_parse = true;
}
break;
}
if (state->error)
{
return;
}
if (stop_parse)
{
break;
}
}
}
void ParseInstruction(ParseState* state)
{
state->lexer.SetIdentifierMatchRule(Lexer::IdentifierMatchRule::Mnemonic);
AssemblerToken mnemonic_token = state->lexer.Lookahead();
if (mnemonic_token.token_type != TokenType::Identifier)
{
state->lexer.SetIdentifierMatchRule(Lexer::IdentifierMatchRule::Typical);
return;
}
ParseInfo const* parse_info = mnemonic_tokens.Find(mnemonic_token.token_val);
bool is_extended = false;
if (parse_info == nullptr)
{
parse_info = extended_mnemonic_tokens.Find(mnemonic_token.token_val);
if (parse_info == nullptr)
{
state->EmitErrorHere(
fmt::format("Unknown or unsupported mnemonic '{}'", mnemonic_token.ValStr()));
return;
}
is_extended = true;
}
state->plugin.OnInstructionPre(*parse_info, is_extended);
state->lexer.EatAndReset();
ParseOperandList(state, parse_info->parse_algorithm);
if (state->error)
{
return;
}
state->plugin.OnInstructionPost(*parse_info, is_extended);
}
void ParseLabel(ParseState* state)
{
std::array<AssemblerToken, 2> tokens;
state->lexer.LookaheadN(&tokens);
if (tokens[0].token_type == TokenType::Identifier && tokens[1].token_type == TokenType::Colon)
{
state->plugin.OnLabelDecl(tokens[0].token_val);
if (state->error)
{
return;
}
state->lexer.EatN<2>();
}
}
void ParseResolvedExpr(ParseState* state)
{
state->plugin.OnResolvedExprPre();
ParseBitor(state);
if (state->error)
{
return;
}
state->plugin.OnResolvedExprPost();
}
void ParseExpressionList(ParseState* state)
{
ParseResolvedExpr(state);
if (state->error)
{
return;
}
while (state->HasToken(TokenType::Comma))
{
state->lexer.Eat();
ParseResolvedExpr(state);
if (state->error)
{
return;
}
}
}
void ParseFloat(ParseState* state)
{
AssemblerToken flt_token = state->lexer.LookaheadFloat();
if (flt_token.token_type != TokenType::FloatLit)
{
state->EmitErrorHere("Invalid floating point literal");
return;
}
state->plugin.OnTerminal(Terminal::Flt, flt_token);
state->lexer.Eat();
}
void ParseFloatList(ParseState* state)
{
ParseFloat(state);
if (state->error)
{
return;
}
while (state->HasToken(TokenType::Comma))
{
state->lexer.Eat();
ParseFloat(state);
if (state->error)
{
return;
}
}
}
void ParseDefvar(ParseState* state)
{
AssemblerToken tok = state->lexer.Lookahead();
if (tok.token_type == TokenType::Identifier)
{
state->plugin.OnVarDecl(tok.token_val);
if (state->error)
{
return;
}
state->lexer.Eat();
state->ParseToken(TokenType::Comma);
if (state->error)
{
return;
}
ParseResolvedExpr(state);
}
else
{
state->EmitErrorHere(fmt::format("Expected an identifier, but found '{}'", tok.ValStr()));
}
}
void ParseString(ParseState* state)
{
AssemblerToken tok = state->lexer.Lookahead();
if (tok.token_type == TokenType::StringLit)
{
state->plugin.OnTerminal(Terminal::Str, tok);
state->lexer.Eat();
}
else
{
state->EmitErrorHere(fmt::format("Expected a string literal, but found '{}'", tok.ValStr()));
}
}
void ParseDirective(ParseState* state)
{
// TODO: test directives
state->lexer.SetIdentifierMatchRule(Lexer::IdentifierMatchRule::Directive);
AssemblerToken tok = state->lexer.Lookahead();
if (tok.token_type != TokenType::Identifier)
{
state->EmitErrorHere(fmt::format("Unexpected token '{}' in directive type", tok.ValStr()));
return;
}
GekkoDirective const* directive_enum = directives_map.Find(tok.token_val);
if (directive_enum == nullptr)
{
state->EmitErrorHere(fmt::format("Unknown assembler directive '{}'", tok.ValStr()));
return;
}
state->plugin.OnDirectivePre(*directive_enum);
state->lexer.EatAndReset();
switch (*directive_enum)
{
case GekkoDirective::Byte:
case GekkoDirective::_2byte:
case GekkoDirective::_4byte:
case GekkoDirective::_8byte:
ParseExpressionList(state);
break;
case GekkoDirective::Float:
case GekkoDirective::Double:
ParseFloatList(state);
break;
case GekkoDirective::Locate:
case GekkoDirective::Zeros:
case GekkoDirective::Skip:
ParseResolvedExpr(state);
break;
case GekkoDirective::PadAlign:
case GekkoDirective::Align:
ParseImm(state);
break;
case GekkoDirective::DefVar:
ParseDefvar(state);
break;
case GekkoDirective::Ascii:
case GekkoDirective::Asciz:
ParseString(state);
break;
}
if (state->error)
{
return;
}
state->plugin.OnDirectivePost(*directive_enum);
}
void ParseLine(ParseState* state)
{
if (state->HasToken(TokenType::Dot))
{
state->ParseToken(TokenType::Dot);
ParseDirective(state);
}
else
{
ParseInstruction(state);
}
}
void ParseProgram(ParseState* state)
{
AssemblerToken tok = state->lexer.Lookahead();
if (tok.token_type == TokenType::Eof)
{
state->eof = true;
return;
}
ParseLabel(state);
if (state->error)
{
return;
}
ParseLine(state);
if (state->error)
{
return;
}
while (!state->eof && !state->error)
{
tok = state->lexer.Lookahead();
if (tok.token_type == TokenType::Eof)
{
state->eof = true;
}
else if (tok.token_type == TokenType::Eol)
{
state->lexer.Eat();
ParseLabel(state);
if (state->error)
{
return;
}
ParseLine(state);
}
else
{
state->EmitErrorHere(
fmt::format("Unexpected token '{}' where line should have ended", tok.ValStr()));
}
}
}
} // namespace
ParseState::ParseState(std::string_view input_str, ParsePlugin& p)
: lexer(input_str), plugin(p), eof(false)
{
}
bool ParseState::HasToken(TokenType tp) const
{
return lexer.LookaheadType() == tp;
}
void ParseState::ParseToken(TokenType tp)
{
AssemblerToken tok = lexer.LookaheadRef();
if (tok.token_type == tp)
{
lexer.Eat();
}
else
{
EmitErrorHere(fmt::format("Expected '{}' but found '{}'", TokenTypeToStr(tp), tok.ValStr()));
}
}
void ParseState::EmitErrorHere(std::string&& message)
{
AssemblerToken cur_token = lexer.Lookahead();
if (cur_token.token_type == TokenType::Invalid)
{
error = AssemblerError{
std::string(cur_token.invalid_reason),
lexer.CurrentLine(),
lexer.LineNumber(),
lexer.ColNumber() + cur_token.invalid_region.begin,
cur_token.invalid_region.len,
};
}
else
{
error = AssemblerError{
std::move(message), lexer.CurrentLine(), lexer.LineNumber(),
lexer.ColNumber(), cur_token.token_val.size(),
};
}
}
void ParseWithPlugin(ParsePlugin* plugin, std::string_view input)
{
ParseState parse_state = ParseState(input, *plugin);
plugin->SetOwner(&parse_state);
ParseProgram(&parse_state);
if (parse_state.error)
{
plugin->OnError();
plugin->ForwardError(std::move(*parse_state.error));
}
else
{
plugin->PostParseAction();
if (parse_state.error)
{
plugin->OnError();
plugin->ForwardError(std::move(*parse_state.error));
}
}
plugin->SetOwner(nullptr);
}
} // namespace Common::GekkoAssembler::detail

View file

@ -0,0 +1,124 @@
// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <optional>
#include <string>
#include <string_view>
#include "Common/Assembler/AssemblerShared.h"
#include "Common/Assembler/GekkoLexer.h"
#include "Common/CommonTypes.h"
namespace Common::GekkoAssembler::detail
{
class ParsePlugin;
struct ParseState
{
ParseState(std::string_view input_str, ParsePlugin& plugin);
bool HasToken(TokenType tp) const;
void ParseToken(TokenType tp);
void EmitErrorHere(std::string&& message);
Lexer lexer;
ParsePlugin& plugin;
std::optional<AssemblerError> error;
bool eof;
};
enum class AsmOp
{
Or,
Xor,
And,
Lsh,
Rsh,
Add,
Sub,
Mul,
Div,
Neg,
Not
};
enum class Terminal
{
Hex,
Dec,
Oct,
Bin,
Flt,
Str,
Id,
GPR,
FPR,
SPR,
CRField,
Lt,
Gt,
Eq,
So,
Dot,
};
enum class ParenType
{
Normal,
RelConv,
};
// Overridable plugin class supporting a series of skeleton functions which get called when
// the parser parses a given point of interest
class ParsePlugin
{
public:
ParsePlugin() : m_owner(nullptr) {}
virtual ~ParsePlugin() = default;
void SetOwner(ParseState* o) { m_owner = o; }
void ForwardError(AssemblerError&& err) { m_owner_error = std::move(err); }
std::optional<AssemblerError>& Error() { return m_owner_error; }
virtual void PostParseAction() {}
// Nonterminal callouts
// Pre occurs prior to the head nonterminal being parsed
// Post occurs after the nonterminal has been fully parsed
virtual void OnDirectivePre(GekkoDirective directive) {}
virtual void OnDirectivePost(GekkoDirective directive) {}
virtual void OnInstructionPre(const ParseInfo& mnemonic_info, bool extended) {}
virtual void OnInstructionPost(const ParseInfo& mnemonic_info, bool extended) {}
virtual void OnOperandPre() {}
virtual void OnOperandPost() {}
virtual void OnResolvedExprPre() {}
virtual void OnResolvedExprPost() {}
// Operator callouts
// All occur after the relevant operands have been parsed
virtual void OnOperator(AsmOp operation) {}
// Individual token callouts
// All occur prior to the token being parsed
// Due to ambiguity of some tokens, an explicit operation is provided
virtual void OnTerminal(Terminal type, const AssemblerToken& val) {}
virtual void OnHiaddr(std::string_view id) {}
virtual void OnLoaddr(std::string_view id) {}
virtual void OnOpenParen(ParenType type) {}
virtual void OnCloseParen(ParenType type) {}
virtual void OnError() {}
virtual void OnLabelDecl(std::string_view name) {}
virtual void OnVarDecl(std::string_view name) {}
protected:
ParseState* m_owner;
std::optional<AssemblerError> m_owner_error;
};
// Parse the provided input with a plugin to handle what to do with certain points of interest
// e.g. Convert to an IR for generating final machine code, picking up syntactical information
void ParseWithPlugin(ParsePlugin* plugin, std::string_view input);
} // namespace Common::GekkoAssembler::detail

View file

@ -1,6 +1,18 @@
add_library(common
Analytics.cpp
Analytics.h
Assembler/AssemblerShared.cpp
Assembler/AssemblerShared.h
Assembler/AssemblerTables.cpp
Assembler/AssemblerTables.h
Assembler/GekkoAssembler.cpp
Assembler/GekkoAssembler.h
Assembler/GekkoIRGen.cpp
Assembler/GekkoIRGen.h
Assembler/GekkoLexer.cpp
Assembler/GekkoLexer.h
Assembler/GekkoParser.cpp
Assembler/GekkoParser.h
Assert.h
BitField.h
BitSet.h
@ -220,7 +232,7 @@ if(_M_ARM_64)
ArmFPURoundMode.cpp
)
else()
if(_M_X86) #X86
if(_M_X86_64) #X86
target_sources(common PRIVATE
x64ABI.cpp
x64ABI.h
@ -317,7 +329,7 @@ endif()
if(UNIX)
# Posix networking code needs to be fixed for Windows
add_executable(traversal_server TraversalServer.cpp)
target_link_libraries(traversal_server PRIVATE common)
target_link_libraries(traversal_server PRIVATE common fmt::fmt)
if(SYSTEMD_FOUND)
target_link_libraries(traversal_server PRIVATE ${SYSTEMD_LIBRARIES})
endif()

View file

@ -82,9 +82,14 @@ public:
}
bool IsInSpace(const u8* ptr) const { return ptr >= region && ptr < (region + region_size); }
// Cannot currently be undone. Will write protect the entire code region.
// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
void WriteProtect() { Common::WriteProtectMemory(region, region_size, true); }
void WriteProtect(bool allow_execute)
{
Common::WriteProtectMemory(region, region_size, allow_execute);
}
void UnWriteProtect(bool allow_execute)
{
Common::UnWriteProtectMemory(region, region_size, allow_execute);
}
void ResetCodePtr() { T::SetCodePtr(region, region + region_size); }
size_t GetSpaceLeft() const
{

View file

@ -94,6 +94,7 @@
#define DYNAMICINPUT_DIR "DynamicInputTextures"
#define GRAPHICSMOD_DIR "GraphicMods"
#define WIISDSYNC_DIR "WiiSDSync"
#define ASSEMBLY_DIR "SavedAssembly"
// This one is only used to remove it if it was present
#define SHADERCACHE_LEGACY_DIR "ShaderCache"
@ -108,7 +109,6 @@
#define WIIPAD_CONFIG "WiimoteNew.ini"
#define GCKEYBOARD_CONFIG "GCKeyNew.ini"
#define GFX_CONFIG "GFX.ini"
#define DEBUGGER_CONFIG "Debugger.ini"
#define LOGGER_CONFIG "Logger.ini"
#define DUALSHOCKUDPCLIENT_CONFIG "DSUClient.ini"
#define FREELOOK_CONFIG "FreeLook.ini"

View file

@ -154,7 +154,6 @@ static const std::map<System, std::string> system_to_name = {
{System::GCKeyboard, "GCKeyboard"},
{System::GFX, "Graphics"},
{System::Logger, "Logger"},
{System::Debugger, "Debugger"},
{System::SYSCONF, "SYSCONF"},
{System::DualShockUDPClient, "DualShockUDPClient"},
{System::FreeLook, "FreeLook"},

View file

@ -29,7 +29,6 @@ enum class System
GCKeyboard,
GFX,
Logger,
Debugger,
DualShockUDPClient,
FreeLook,
Session,

View file

@ -250,7 +250,19 @@ public:
}
private:
std::array<__m128i, NUM_ROUND_KEYS> round_keys;
// Ensures alignment specifiers are respected.
struct XmmReg
{
__m128i data;
XmmReg& operator=(const __m128i& m)
{
data = m;
return *this;
}
operator __m128i() const { return data; }
};
std::array<XmmReg, NUM_ROUND_KEYS> round_keys;
};
#endif

View file

@ -166,7 +166,20 @@ public:
}
private:
using WorkBlock = CyclicArray<__m128i, 4>;
struct XmmReg
{
// Allows aliasing attributes to be respected in the
// face of templates.
__m128i data;
XmmReg& operator=(const __m128i& d)
{
data = d;
return *this;
}
operator __m128i() const { return data; }
};
using WorkBlock = CyclicArray<XmmReg, 4>;
ATTRIBUTE_TARGET("ssse3")
static inline __m128i byterev_16B(__m128i x)
@ -244,7 +257,7 @@ private:
virtual bool HwAccelerated() const override { return true; }
std::array<__m128i, 2> state{};
std::array<XmmReg, 2> state{};
};
#endif

View file

@ -43,9 +43,7 @@ const std::vector<Watch>& Watches::GetWatches() const
void Watches::UnsetWatch(u32 address)
{
m_watches.erase(std::remove_if(m_watches.begin(), m_watches.end(),
[address](const auto& watch) { return watch.address == address; }),
m_watches.end());
std::erase_if(m_watches, [address](const auto& watch) { return watch.address == address; });
}
void Watches::UpdateWatch(std::size_t index, u32 address, std::string name)

View file

@ -31,7 +31,7 @@ int ENET_CALLBACK InterceptCallback(ENetHost* host, ENetEvent* event)
// wakeup packet received
if (host->receivedDataLength == 1 && host->receivedData[0] == 0)
{
event->type = (ENetEventType)42;
event->type = static_cast<ENetEventType>(SKIPPABLE_EVENT);
return 1;
}
return 0;

View file

@ -21,4 +21,7 @@ using ENetHostPtr = std::unique_ptr<ENetHost, ENetHostDeleter>;
void WakeupThread(ENetHost* host);
int ENET_CALLBACK InterceptCallback(ENetHost* host, ENetEvent* event);
bool SendPacket(ENetPeer* socket, const sf::Packet& packet, u8 channel_id);
// used for traversal packets and wake-up packets
constexpr int SKIPPABLE_EVENT = 42;
} // namespace Common::ENet

View file

@ -872,7 +872,6 @@ static void RebuildUserDirectories(unsigned int dir_index)
s_user_paths[F_WIIPADCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + WIIPAD_CONFIG;
s_user_paths[F_GCKEYBOARDCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + GCKEYBOARD_CONFIG;
s_user_paths[F_GFXCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + GFX_CONFIG;
s_user_paths[F_DEBUGGERCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + DEBUGGER_CONFIG;
s_user_paths[F_LOGGERCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + LOGGER_CONFIG;
s_user_paths[F_DUALSHOCKUDPCLIENTCONFIG_IDX] =
s_user_paths[D_CONFIG_IDX] + DUALSHOCKUDPCLIENT_CONFIG;
@ -897,6 +896,8 @@ static void RebuildUserDirectories(unsigned int dir_index)
s_user_paths[D_GBASAVES_IDX] = s_user_paths[D_GBAUSER_IDX] + GBASAVES_DIR DIR_SEP;
s_user_paths[F_GBABIOS_IDX] = s_user_paths[D_GBAUSER_IDX] + GBA_BIOS;
s_user_paths[D_ASM_ROOT_IDX] = s_user_paths[D_USER_IDX] + ASSEMBLY_DIR DIR_SEP;
// The shader cache has moved to the cache directory, so remove the old one.
// TODO: remove that someday.
File::DeleteDirRecursively(s_user_paths[D_USER_IDX] + SHADERCACHE_LEGACY_DIR DIR_SEP);
@ -908,7 +909,6 @@ static void RebuildUserDirectories(unsigned int dir_index)
s_user_paths[F_GCKEYBOARDCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + GCKEYBOARD_CONFIG;
s_user_paths[F_WIIPADCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + WIIPAD_CONFIG;
s_user_paths[F_GFXCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + GFX_CONFIG;
s_user_paths[F_DEBUGGERCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + DEBUGGER_CONFIG;
s_user_paths[F_LOGGERCONFIG_IDX] = s_user_paths[D_CONFIG_IDX] + LOGGER_CONFIG;
s_user_paths[F_DUALSHOCKUDPCLIENTCONFIG_IDX] =
s_user_paths[D_CONFIG_IDX] + DUALSHOCKUDPCLIENT_CONFIG;

View file

@ -71,13 +71,13 @@ enum
D_GPU_DRIVERS_TMP,
D_GPU_DRIVERS_HOOKS,
D_GPU_DRIVERS_FILE_REDIRECT,
D_ASM_ROOT_IDX,
FIRST_FILE_USER_PATH_IDX,
F_DOLPHINCONFIG_IDX = FIRST_FILE_USER_PATH_IDX,
F_GCPADCONFIG_IDX,
F_WIIPADCONFIG_IDX,
F_GCKEYBOARDCONFIG_IDX,
F_GFXCONFIG_IDX,
F_DEBUGGERCONFIG_IDX,
F_LOGGERCONFIG_IDX,
F_MAINLOG_IDX,
F_MEM1DUMP_IDX,

View file

@ -74,14 +74,14 @@ u32 ClassifyFloat(float fvalue)
}
const std::array<BaseAndDec, 32> frsqrte_expected = {{
{0x3ffa000, 0x7a4}, {0x3c29000, 0x700}, {0x38aa000, 0x670}, {0x3572000, 0x5f2},
{0x3279000, 0x584}, {0x2fb7000, 0x524}, {0x2d26000, 0x4cc}, {0x2ac0000, 0x47e},
{0x2881000, 0x43a}, {0x2665000, 0x3fa}, {0x2468000, 0x3c2}, {0x2287000, 0x38e},
{0x20c1000, 0x35e}, {0x1f12000, 0x332}, {0x1d79000, 0x30a}, {0x1bf4000, 0x2e6},
{0x1a7e800, 0x568}, {0x17cb800, 0x4f3}, {0x1552800, 0x48d}, {0x130c000, 0x435},
{0x10f2000, 0x3e7}, {0x0eff000, 0x3a2}, {0x0d2e000, 0x365}, {0x0b7c000, 0x32e},
{0x09e5000, 0x2fc}, {0x0867000, 0x2d0}, {0x06ff000, 0x2a8}, {0x05ab800, 0x283},
{0x046a000, 0x261}, {0x0339800, 0x243}, {0x0218800, 0x226}, {0x0105800, 0x20b},
{0x1a7e800, -0x568}, {0x17cb800, -0x4f3}, {0x1552800, -0x48d}, {0x130c000, -0x435},
{0x10f2000, -0x3e7}, {0x0eff000, -0x3a2}, {0x0d2e000, -0x365}, {0x0b7c000, -0x32e},
{0x09e5000, -0x2fc}, {0x0867000, -0x2d0}, {0x06ff000, -0x2a8}, {0x05ab800, -0x283},
{0x046a000, -0x261}, {0x0339800, -0x243}, {0x0218800, -0x226}, {0x0105800, -0x20b},
{0x3ffa000, -0x7a4}, {0x3c29000, -0x700}, {0x38aa000, -0x670}, {0x3572000, -0x5f2},
{0x3279000, -0x584}, {0x2fb7000, -0x524}, {0x2d26000, -0x4cc}, {0x2ac0000, -0x47e},
{0x2881000, -0x43a}, {0x2665000, -0x3fa}, {0x2468000, -0x3c2}, {0x2287000, -0x38e},
{0x20c1000, -0x35e}, {0x1f12000, -0x332}, {0x1d79000, -0x30a}, {0x1bf4000, -0x2e6},
}};
double ApproximateReciprocalSquareRoot(double val)
@ -128,14 +128,13 @@ double ApproximateReciprocalSquareRoot(double val)
exponent += 1LL << 52;
}
const bool odd_exponent = !(exponent & (1LL << 52));
const s64 exponent_lsb = exponent & (1LL << 52);
exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);
integral = sign | exponent;
const int i = static_cast<int>(mantissa >> 37);
const int index = i / 2048 + (odd_exponent ? 16 : 0);
const auto& entry = frsqrte_expected[index];
integral |= static_cast<s64>(entry.m_base - entry.m_dec * (i % 2048)) << 26;
const int i = static_cast<int>((exponent_lsb | mantissa) >> 37);
const auto& entry = frsqrte_expected[i / 2048];
integral |= static_cast<s64>(entry.m_base + entry.m_dec * (i % 2048)) << 26;
return BitCast<double>(integral);
}

View file

@ -23,11 +23,15 @@ static constexpr u64 DOUBLE_SIGN = 0x8000000000000000ULL;
static constexpr u64 DOUBLE_EXP = 0x7FF0000000000000ULL;
static constexpr u64 DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL;
static constexpr u64 DOUBLE_ZERO = 0x0000000000000000ULL;
static constexpr int DOUBLE_EXP_WIDTH = 11;
static constexpr int DOUBLE_FRAC_WIDTH = 52;
static constexpr u32 FLOAT_SIGN = 0x80000000;
static constexpr u32 FLOAT_EXP = 0x7F800000;
static constexpr u32 FLOAT_FRAC = 0x007FFFFF;
static constexpr u32 FLOAT_ZERO = 0x00000000;
static constexpr int FLOAT_EXP_WIDTH = 8;
static constexpr int FLOAT_FRAC_WIDTH = 23;
inline bool IsQNAN(double d)
{

View file

@ -359,30 +359,6 @@ static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
}
#elif defined(_M_X86)
FUNCTION_TARGET_SSE42
static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
{
u32 h = len;
u32 Step = (len / 4);
const u32* data = (const u32*)src;
const u32* end = data + Step;
if (samples == 0)
samples = std::max(Step, 1u);
Step = Step / samples;
if (Step < 1)
Step = 1;
while (data < end)
{
h = _mm_crc32_u32(h, data[0]);
data += Step;
}
const u8* data2 = (const u8*)end;
return (u64)_mm_crc32_u32(h, u32(data2[0]));
}
#elif defined(_M_ARM_64)
static u64 GetHash64_ARMv8_CRC32(const u8* src, u32 len, u32 samples)
@ -433,7 +409,7 @@ static u64 SetHash64Function(const u8* src, u32 len, u32 samples)
{
if (cpu_info.bCRC32)
{
#if defined(_M_X86_64) || defined(_M_X86)
#if defined(_M_X86_64)
s_texture_hash_func = &GetHash64_SSE42_CRC32;
#elif defined(_M_ARM_64)
s_texture_hash_func = &GetHash64_ARMv8_CRC32;

View file

@ -33,7 +33,8 @@ public:
void FollowRedirects(long max);
s32 GetLastResponseCode();
Response Fetch(const std::string& url, Method method, const Headers& headers, const u8* payload,
size_t size, AllowedReturnCodes codes = AllowedReturnCodes::Ok_Only);
size_t size, AllowedReturnCodes codes = AllowedReturnCodes::Ok_Only,
std::span<Multiform> multiform = {});
static int CurlProgressCallback(Impl* impl, curl_off_t dltotal, curl_off_t dlnow,
curl_off_t ultotal, curl_off_t ulnow);
@ -174,6 +175,13 @@ void HttpRequest::Impl::UseIPv4()
curl_easy_setopt(m_curl.get(), CURLOPT_IPRESOLVE, CURL_IPRESOLVE_V4);
}
HttpRequest::Response HttpRequest::PostMultiform(const std::string& url,
std::span<Multiform> multiform,
const Headers& headers, AllowedReturnCodes codes)
{
return m_impl->Fetch(url, Impl::Method::POST, headers, nullptr, 0, codes, multiform);
}
void HttpRequest::Impl::FollowRedirects(long max)
{
curl_easy_setopt(m_curl.get(), CURLOPT_FOLLOWLOCATION, 1);
@ -225,17 +233,33 @@ static size_t header_callback(char* buffer, size_t size, size_t nitems, void* us
HttpRequest::Response HttpRequest::Impl::Fetch(const std::string& url, Method method,
const Headers& headers, const u8* payload,
size_t size, AllowedReturnCodes codes)
size_t size, AllowedReturnCodes codes,
std::span<Multiform> multiform)
{
m_response_headers.clear();
curl_easy_setopt(m_curl.get(), CURLOPT_POST, method == Method::POST);
curl_easy_setopt(m_curl.get(), CURLOPT_URL, url.c_str());
if (method == Method::POST)
if (method == Method::POST && multiform.empty())
{
curl_easy_setopt(m_curl.get(), CURLOPT_POSTFIELDS, payload);
curl_easy_setopt(m_curl.get(), CURLOPT_POSTFIELDSIZE, size);
}
curl_mime* form = nullptr;
Common::ScopeGuard multiform_guard{[&form] { curl_mime_free(form); }};
if (!multiform.empty())
{
form = curl_mime_init(m_curl.get());
for (const auto& value : multiform)
{
curl_mimepart* part = curl_mime_addpart(form);
curl_mime_name(part, value.name.c_str());
curl_mime_data(part, value.data.c_str(), value.data.size());
}
curl_easy_setopt(m_curl.get(), CURLOPT_MIMEPOST, form);
}
curl_slist* list = nullptr;
Common::ScopeGuard list_guard{[&list] { curl_slist_free_all(list); }};
for (const auto& [name, value] : headers)

View file

@ -8,6 +8,7 @@
#include <map>
#include <memory>
#include <optional>
#include <span>
#include <string>
#include <vector>
@ -35,6 +36,12 @@ public:
using Response = std::optional<std::vector<u8>>;
using Headers = std::map<std::string, std::optional<std::string>>;
struct Multiform
{
std::string name;
std::string data;
};
void SetCookies(const std::string& cookies);
void UseIPv4();
void FollowRedirects(long max = 1);
@ -48,6 +55,10 @@ public:
Response Post(const std::string& url, const std::string& payload, const Headers& headers = {},
AllowedReturnCodes codes = AllowedReturnCodes::Ok_Only);
Response PostMultiform(const std::string& url, std::span<Multiform> multiform,
const Headers& headers = {},
AllowedReturnCodes codes = AllowedReturnCodes::Ok_Only);
private:
class Impl;
std::unique_ptr<Impl> m_impl;

View file

@ -101,6 +101,15 @@ bool IOFile::Close()
return m_good;
}
IOFile IOFile::Duplicate(const char openmode[]) const
{
#ifdef _WIN32
return IOFile(_fdopen(_dup(_fileno(m_file)), openmode));
#else // _WIN32
return IOFile(fdopen(dup(fileno(m_file)), openmode));
#endif // _WIN32
}
void IOFile::SetHandle(std::FILE* file)
{
Close();

View file

@ -51,6 +51,8 @@ public:
SharedAccess sh = SharedAccess::Default);
bool Close();
IOFile Duplicate(const char openmode[]) const;
template <typename T>
bool ReadArray(T* elements, size_t count, size_t* num_read = nullptr)
{

View file

@ -3,7 +3,7 @@
#pragma once
#if defined(_M_X86)
#if defined(_M_X86_64)
/**
* It is assumed that all compilers used to build Dolphin support intrinsics up to and including
@ -49,13 +49,13 @@
#endif // defined(_MSC_VER) || defined(__INTEL_COMPILER)
#endif // _M_X86
#endif // _M_X86_64
/**
* Define the FUNCTION_TARGET macros to nothing if they are not needed, or not on an X86 platform.
* This way when a function is defined with FUNCTION_TARGET you don't need to define a second
* version without the macro around a #ifdef guard. Be careful when using intrinsics, as all use
* should still be placed around a #ifdef _M_X86 if the file is compiled on all architectures.
* should still be placed around a #ifdef _M_X86_64 if the file is compiled on all architectures.
*/
#ifndef FUNCTION_TARGET_SSE42
#define FUNCTION_TARGET_SSE42

View file

@ -14,6 +14,15 @@ namespace Common
{
#ifdef _WIN32
struct WindowsMemoryRegion;
struct WindowsMemoryFunctions
{
Common::DynamicLibrary m_kernel32_handle;
Common::DynamicLibrary m_api_ms_win_core_memory_l1_1_6_handle;
void* m_address_UnmapViewOfFileEx = nullptr;
void* m_address_VirtualAlloc2 = nullptr;
void* m_address_MapViewOfFile3 = nullptr;
};
#endif
// This class lets you create a block of anonymous RAM, and then arbitrarily map views into it.
@ -110,11 +119,7 @@ private:
std::vector<WindowsMemoryRegion> m_regions;
void* m_reserved_region = nullptr;
void* m_memory_handle = nullptr;
Common::DynamicLibrary m_kernel32_handle;
Common::DynamicLibrary m_api_ms_win_core_memory_l1_1_6_handle;
void* m_address_UnmapViewOfFileEx = nullptr;
void* m_address_VirtualAlloc2 = nullptr;
void* m_address_MapViewOfFile3 = nullptr;
WindowsMemoryFunctions m_memory_functions;
#else
int m_shm_fd = 0;
void* m_reserved_region = nullptr;
@ -155,9 +160,34 @@ public:
///
void Release();
///
/// Ensure that the memory page at the given byte offset from the start of the memory region is
/// writable. We use this on Windows as a workaround to only actually commit pages as they are
/// written to. On other OSes this does nothing.
///
/// @param offset The offset into the memory region that should be made writable if it isn't.
///
void EnsureMemoryPageWritable(size_t offset)
{
#ifdef _WIN32
const size_t block_index = offset / BLOCK_SIZE;
if (m_writable_block_handles[block_index] == nullptr)
MakeMemoryBlockWritable(block_index);
#endif
}
private:
void* m_memory = nullptr;
size_t m_size = 0;
#ifdef _WIN32
void* m_zero_block = nullptr;
constexpr static size_t BLOCK_SIZE = 8 * 1024 * 1024; // size of allocated memory blocks
WindowsMemoryFunctions m_memory_functions;
std::vector<void*> m_writable_block_handles;
void MakeMemoryBlockWritable(size_t offset);
#endif
};
} // namespace Common

View file

@ -12,6 +12,7 @@
#include <windows.h>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/CommonTypes.h"
@ -49,48 +50,55 @@ struct WindowsMemoryRegion
}
};
static bool InitWindowsMemoryFunctions(WindowsMemoryFunctions* functions)
{
DynamicLibrary kernelBase{"KernelBase.dll"};
if (!kernelBase.IsOpen())
return false;
void* const ptr_IsApiSetImplemented = kernelBase.GetSymbolAddress("IsApiSetImplemented");
if (!ptr_IsApiSetImplemented)
return false;
if (!static_cast<PIsApiSetImplemented>(ptr_IsApiSetImplemented)("api-ms-win-core-memory-l1-1-6"))
return false;
functions->m_api_ms_win_core_memory_l1_1_6_handle.Open("api-ms-win-core-memory-l1-1-6.dll");
functions->m_kernel32_handle.Open("Kernel32.dll");
if (!functions->m_api_ms_win_core_memory_l1_1_6_handle.IsOpen() ||
!functions->m_kernel32_handle.IsOpen())
{
functions->m_api_ms_win_core_memory_l1_1_6_handle.Close();
functions->m_kernel32_handle.Close();
return false;
}
void* const address_VirtualAlloc2 =
functions->m_api_ms_win_core_memory_l1_1_6_handle.GetSymbolAddress("VirtualAlloc2FromApp");
void* const address_MapViewOfFile3 =
functions->m_api_ms_win_core_memory_l1_1_6_handle.GetSymbolAddress("MapViewOfFile3FromApp");
void* const address_UnmapViewOfFileEx =
functions->m_kernel32_handle.GetSymbolAddress("UnmapViewOfFileEx");
if (address_VirtualAlloc2 && address_MapViewOfFile3 && address_UnmapViewOfFileEx)
{
functions->m_address_VirtualAlloc2 = address_VirtualAlloc2;
functions->m_address_MapViewOfFile3 = address_MapViewOfFile3;
functions->m_address_UnmapViewOfFileEx = address_UnmapViewOfFileEx;
return true;
}
// at least one function is not available, use legacy logic
functions->m_api_ms_win_core_memory_l1_1_6_handle.Close();
functions->m_kernel32_handle.Close();
return false;
}
MemArena::MemArena()
{
// Check if VirtualAlloc2 and MapViewOfFile3 are available, which provide functionality to reserve
// a memory region no other allocation may occupy while still allowing us to allocate and map
// stuff within it. If they're not available we'll instead fall back to the 'legacy' logic and
// just hope that nothing allocates in our address range.
DynamicLibrary kernelBase{"KernelBase.dll"};
if (!kernelBase.IsOpen())
return;
void* const ptr_IsApiSetImplemented = kernelBase.GetSymbolAddress("IsApiSetImplemented");
if (!ptr_IsApiSetImplemented)
return;
if (!static_cast<PIsApiSetImplemented>(ptr_IsApiSetImplemented)("api-ms-win-core-memory-l1-1-6"))
return;
m_api_ms_win_core_memory_l1_1_6_handle.Open("api-ms-win-core-memory-l1-1-6.dll");
m_kernel32_handle.Open("Kernel32.dll");
if (!m_api_ms_win_core_memory_l1_1_6_handle.IsOpen() || !m_kernel32_handle.IsOpen())
{
m_api_ms_win_core_memory_l1_1_6_handle.Close();
m_kernel32_handle.Close();
return;
}
void* const address_VirtualAlloc2 =
m_api_ms_win_core_memory_l1_1_6_handle.GetSymbolAddress("VirtualAlloc2FromApp");
void* const address_MapViewOfFile3 =
m_api_ms_win_core_memory_l1_1_6_handle.GetSymbolAddress("MapViewOfFile3FromApp");
void* const address_UnmapViewOfFileEx = m_kernel32_handle.GetSymbolAddress("UnmapViewOfFileEx");
if (address_VirtualAlloc2 && address_MapViewOfFile3 && address_UnmapViewOfFileEx)
{
m_address_VirtualAlloc2 = address_VirtualAlloc2;
m_address_MapViewOfFile3 = address_MapViewOfFile3;
m_address_UnmapViewOfFileEx = address_UnmapViewOfFileEx;
}
else
{
// at least one function is not available, use legacy logic
m_api_ms_win_core_memory_l1_1_6_handle.Close();
m_kernel32_handle.Close();
}
InitWindowsMemoryFunctions(&m_memory_functions);
}
MemArena::~MemArena()
@ -146,9 +154,9 @@ u8* MemArena::ReserveMemoryRegion(size_t memory_size)
}
u8* base;
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
if (m_memory_functions.m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
{
base = static_cast<u8*>(static_cast<PVirtualAlloc2>(m_address_VirtualAlloc2)(
base = static_cast<u8*>(static_cast<PVirtualAlloc2>(m_memory_functions.m_address_VirtualAlloc2)(
nullptr, nullptr, memory_size, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS,
nullptr, 0));
if (base)
@ -177,7 +185,7 @@ u8* MemArena::ReserveMemoryRegion(size_t memory_size)
void MemArena::ReleaseMemoryRegion()
{
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen() && m_reserved_region)
if (m_memory_functions.m_api_ms_win_core_memory_l1_1_6_handle.IsOpen() && m_reserved_region)
{
// user should have unmapped everything by this point, check if that's true and yell if not
// (it indicates a bug in the emulated memory mapping logic)
@ -314,7 +322,7 @@ WindowsMemoryRegion* MemArena::EnsureSplitRegionForMapping(void* start_address,
void* MemArena::MapInMemoryRegion(s64 offset, size_t size, void* base)
{
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
if (m_memory_functions.m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
{
WindowsMemoryRegion* const region = EnsureSplitRegionForMapping(base, size);
if (!region)
@ -323,7 +331,7 @@ void* MemArena::MapInMemoryRegion(s64 offset, size_t size, void* base)
return nullptr;
}
void* rv = static_cast<PMapViewOfFile3>(m_address_MapViewOfFile3)(
void* rv = static_cast<PMapViewOfFile3>(m_memory_functions.m_address_MapViewOfFile3)(
m_memory_handle, nullptr, base, offset, size, MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE,
nullptr, 0);
if (rv)
@ -416,10 +424,10 @@ bool MemArena::JoinRegionsAfterUnmap(void* start_address, size_t size)
void MemArena::UnmapFromMemoryRegion(void* view, size_t size)
{
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
if (m_memory_functions.m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
{
if (static_cast<PUnmapViewOfFileEx>(m_address_UnmapViewOfFileEx)(view,
MEM_PRESERVE_PLACEHOLDER))
if (static_cast<PUnmapViewOfFileEx>(m_memory_functions.m_address_UnmapViewOfFileEx)(
view, MEM_PRESERVE_PLACEHOLDER))
{
if (!JoinRegionsAfterUnmap(view, size))
PanicAlertFmt("Joining memory region failed.");
@ -434,7 +442,10 @@ void MemArena::UnmapFromMemoryRegion(void* view, size_t size)
UnmapViewOfFile(view);
}
LazyMemoryRegion::LazyMemoryRegion() = default;
LazyMemoryRegion::LazyMemoryRegion()
{
InitWindowsMemoryFunctions(&m_memory_functions);
}
LazyMemoryRegion::~LazyMemoryRegion()
{
@ -448,15 +459,67 @@ void* LazyMemoryRegion::Create(size_t size)
if (size == 0)
return nullptr;
void* memory = VirtualAlloc(nullptr, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (!m_memory_functions.m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
return nullptr;
// reserve block of memory
const size_t memory_size = Common::AlignUp(size, BLOCK_SIZE);
const size_t block_count = memory_size / BLOCK_SIZE;
u8* memory =
static_cast<u8*>(static_cast<PVirtualAlloc2>(m_memory_functions.m_address_VirtualAlloc2)(
nullptr, nullptr, memory_size, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS,
nullptr, 0));
if (!memory)
{
NOTICE_LOG_FMT(MEMMAP, "Memory allocation of {} bytes failed.", size);
NOTICE_LOG_FMT(MEMMAP, "Memory reservation of {} bytes failed.", size);
return nullptr;
}
// split into individual block-sized regions
for (size_t i = 0; i < block_count - 1; ++i)
{
if (!VirtualFree(memory + i * BLOCK_SIZE, BLOCK_SIZE, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER))
{
NOTICE_LOG_FMT(MEMMAP, "Region splitting failed: {}", GetLastErrorString());
// release every split block as well as the remaining unsplit one
for (size_t j = 0; j < i + 1; ++j)
VirtualFree(memory + j * BLOCK_SIZE, 0, MEM_RELEASE);
return nullptr;
}
}
m_memory = memory;
m_size = size;
m_size = memory_size;
// allocate a single block of real memory in the page file
HANDLE zero_block = CreateFileMapping(INVALID_HANDLE_VALUE, nullptr, PAGE_READONLY,
GetHighDWORD(BLOCK_SIZE), GetLowDWORD(BLOCK_SIZE), nullptr);
if (zero_block == nullptr)
{
NOTICE_LOG_FMT(MEMMAP, "CreateFileMapping() failed for zero block: {}", GetLastErrorString());
Release();
return nullptr;
}
m_zero_block = zero_block;
// map the zero page into every block
for (size_t i = 0; i < block_count; ++i)
{
void* result = static_cast<PMapViewOfFile3>(m_memory_functions.m_address_MapViewOfFile3)(
zero_block, nullptr, memory + i * BLOCK_SIZE, 0, BLOCK_SIZE, MEM_REPLACE_PLACEHOLDER,
PAGE_READONLY, nullptr, 0);
if (!result)
{
NOTICE_LOG_FMT(MEMMAP, "Mapping the zero block failed: {}", GetLastErrorString());
Release();
return nullptr;
}
}
m_writable_block_handles.resize(block_count, nullptr);
return memory;
}
@ -464,19 +527,105 @@ void* LazyMemoryRegion::Create(size_t size)
void LazyMemoryRegion::Clear()
{
ASSERT(m_memory);
u8* const memory = static_cast<u8*>(m_memory);
VirtualFree(m_memory, m_size, MEM_DECOMMIT);
VirtualAlloc(m_memory, m_size, MEM_COMMIT, PAGE_READWRITE);
// reset every writable block back to the zero block
for (size_t i = 0; i < m_writable_block_handles.size(); ++i)
{
if (m_writable_block_handles[i] == nullptr)
continue;
// unmap the writable block
if (!static_cast<PUnmapViewOfFileEx>(m_memory_functions.m_address_UnmapViewOfFileEx)(
memory + i * BLOCK_SIZE, MEM_PRESERVE_PLACEHOLDER))
{
PanicAlertFmt("Failed to unmap the writable block: {}", GetLastErrorString());
}
// free the writable block
if (!CloseHandle(m_writable_block_handles[i]))
{
PanicAlertFmt("Failed to free the writable block: {}", GetLastErrorString());
}
m_writable_block_handles[i] = nullptr;
// map the zero block
void* map_result = static_cast<PMapViewOfFile3>(m_memory_functions.m_address_MapViewOfFile3)(
m_zero_block, nullptr, memory + i * BLOCK_SIZE, 0, BLOCK_SIZE, MEM_REPLACE_PLACEHOLDER,
PAGE_READONLY, nullptr, 0);
if (!map_result)
{
PanicAlertFmt("Failed to re-map the zero block: {}", GetLastErrorString());
}
}
}
void LazyMemoryRegion::Release()
{
if (m_memory)
{
VirtualFree(m_memory, 0, MEM_RELEASE);
// unmap all pages and release the not-zero block handles
u8* const memory = static_cast<u8*>(m_memory);
for (size_t i = 0; i < m_writable_block_handles.size(); ++i)
{
static_cast<PUnmapViewOfFileEx>(m_memory_functions.m_address_UnmapViewOfFileEx)(
memory + i * BLOCK_SIZE, MEM_PRESERVE_PLACEHOLDER);
if (m_writable_block_handles[i])
{
CloseHandle(m_writable_block_handles[i]);
m_writable_block_handles[i] = nullptr;
}
}
}
if (m_zero_block)
{
CloseHandle(m_zero_block);
m_zero_block = nullptr;
}
if (m_memory)
{
u8* const memory = static_cast<u8*>(m_memory);
const size_t block_count = m_size / BLOCK_SIZE;
for (size_t i = 0; i < block_count; ++i)
VirtualFree(memory + i * BLOCK_SIZE, 0, MEM_RELEASE);
m_memory = nullptr;
m_size = 0;
}
}
void LazyMemoryRegion::MakeMemoryBlockWritable(size_t block_index)
{
u8* const memory = static_cast<u8*>(m_memory);
// unmap the zero block
if (!static_cast<PUnmapViewOfFileEx>(m_memory_functions.m_address_UnmapViewOfFileEx)(
memory + block_index * BLOCK_SIZE, MEM_PRESERVE_PLACEHOLDER))
{
PanicAlertFmt("Failed to unmap the zero block: {}", GetLastErrorString());
return;
}
// allocate a fresh block to map
HANDLE block = CreateFileMapping(INVALID_HANDLE_VALUE, nullptr, PAGE_READWRITE,
GetHighDWORD(BLOCK_SIZE), GetLowDWORD(BLOCK_SIZE), nullptr);
if (block == nullptr)
{
PanicAlertFmt("CreateFileMapping() failed for writable block: {}", GetLastErrorString());
return;
}
// map the new block
void* map_result = static_cast<PMapViewOfFile3>(m_memory_functions.m_address_MapViewOfFile3)(
block, nullptr, memory + block_index * BLOCK_SIZE, 0, BLOCK_SIZE, MEM_REPLACE_PLACEHOLDER,
PAGE_READWRITE, nullptr, 0);
if (!map_result)
{
PanicAlertFmt("Failed to map the writable block: {}", GetLastErrorString());
CloseHandle(block);
return;
}
m_writable_block_handles[block_index] = block;
}
} // namespace Common

View file

@ -49,6 +49,7 @@ void PCAP::AddHeader(u32 link_type)
m_fp->WriteBytes(&hdr, sizeof(hdr));
}
// Not thread-safe, concurrency between multiple calls to IOFile::WriteBytes.
void PCAP::AddPacket(const u8* bytes, size_t size)
{
std::chrono::system_clock::time_point now(std::chrono::system_clock::now());

View file

@ -81,7 +81,7 @@ void SettingsHandler::Decrypt()
// (see the comment in WriteLine), lines can be separated by CRLFLF.
// To handle this, we remove every CR and treat LF as the line ending.
// (We ignore empty lines.)
decoded.erase(std::remove(decoded.begin(), decoded.end(), '\x0d'), decoded.end());
std::erase(decoded, '\x0d');
}
void SettingsHandler::Reset()
@ -92,12 +92,12 @@ void SettingsHandler::Reset()
m_buffer = {};
}
void SettingsHandler::AddSetting(const std::string& key, const std::string& value)
void SettingsHandler::AddSetting(std::string_view key, std::string_view value)
{
WriteLine(key + '=' + value + "\r\n");
WriteLine(fmt::format("{}={}\r\n", key, value));
}
void SettingsHandler::WriteLine(const std::string& str)
void SettingsHandler::WriteLine(std::string_view str)
{
const u32 old_position = m_position;
const u32 old_key = m_key;

View file

@ -27,7 +27,7 @@ public:
SettingsHandler();
explicit SettingsHandler(Buffer&& buffer);
void AddSetting(const std::string& key, const std::string& value);
void AddSetting(std::string_view key, std::string_view value);
const Buffer& GetBytes() const;
void SetBytes(Buffer&& buffer);
@ -38,7 +38,7 @@ public:
static std::string GenerateSerialNumber();
private:
void WriteLine(const std::string& str);
void WriteLine(std::string_view str);
void WriteByte(u8 b);
std::array<u8, SETTINGS_SIZE> m_buffer;

View file

@ -29,9 +29,11 @@ public:
T& operator[](size_t i) { return m_array[i]; }
const T& operator[](size_t i) const { return m_array[i]; }
auto data() { return m_array.data(); }
auto begin() { return m_array.begin(); }
auto end() { return m_array.begin() + m_size; }
auto data() const { return m_array.data(); }
auto begin() const { return m_array.begin(); }
auto end() const { return m_array.begin() + m_size; }

View file

@ -14,8 +14,9 @@
namespace Common
{
TraversalClient::TraversalClient(ENetHost* netHost, const std::string& server, const u16 port)
: m_NetHost(netHost), m_Server(server), m_port(port)
TraversalClient::TraversalClient(ENetHost* netHost, const std::string& server, const u16 port,
const u16 port_alt)
: m_NetHost(netHost), m_Server(server), m_port(port), m_portAlt(port_alt)
{
netHost->intercept = TraversalClient::InterceptCallback;
@ -146,6 +147,8 @@ void TraversalClient::HandleServerPacket(TraversalPacket* packet)
{
if (it->packet.requestId == packet->requestId)
{
if (packet->requestId == m_TestRequestId)
HandleTraversalTest();
m_OutgoingTraversalPackets.erase(it);
break;
}
@ -161,6 +164,7 @@ void TraversalClient::HandleServerPacket(TraversalPacket* packet)
}
m_HostId = packet->helloFromServer.yourHostId;
m_external_address = packet->helloFromServer.yourAddress;
NewTraversalTest();
m_State = State::Connected;
if (m_Client)
m_Client->OnTraversalStateChanged();
@ -175,7 +179,18 @@ void TraversalClient::HandleServerPacket(TraversalPacket* packet)
ENetBuffer buf;
buf.data = message;
buf.dataLength = sizeof(message) - 1;
enet_socket_send(m_NetHost->socket, &addr, &buf, 1);
if (m_ttlReady)
{
int oldttl;
enet_socket_get_option(m_NetHost->socket, ENET_SOCKOPT_TTL, &oldttl);
enet_socket_set_option(m_NetHost->socket, ENET_SOCKOPT_TTL, m_ttl);
enet_socket_send(m_NetHost->socket, &addr, &buf, 1);
enet_socket_set_option(m_NetHost->socket, ENET_SOCKOPT_TTL, oldttl);
}
else
{
enet_socket_send(m_NetHost->socket, &addr, &buf, 1);
}
}
else
{
@ -231,12 +246,15 @@ void TraversalClient::OnFailure(FailureReason reason)
void TraversalClient::ResendPacket(OutgoingTraversalPacketInfo* info)
{
bool testPacket =
m_TestSocket != ENET_SOCKET_NULL && info->packet.type == TraversalPacketType::TestPlease;
info->sendTime = enet_time_get();
info->tries++;
ENetBuffer buf;
buf.data = &info->packet;
buf.dataLength = sizeof(info->packet);
if (enet_socket_send(m_NetHost->socket, &m_ServerAddress, &buf, 1) == -1)
if (enet_socket_send(testPacket ? m_TestSocket : m_NetHost->socket, &m_ServerAddress, &buf, 1) ==
-1)
OnFailure(FailureReason::SocketSendError);
}
@ -275,6 +293,112 @@ void TraversalClient::HandlePing()
}
}
void TraversalClient::NewTraversalTest()
{
// create test socket
if (m_TestSocket != ENET_SOCKET_NULL)
enet_socket_destroy(m_TestSocket);
m_TestSocket = enet_socket_create(ENET_SOCKET_TYPE_DATAGRAM);
ENetAddress addr = {ENET_HOST_ANY, 0};
if (m_TestSocket == ENET_SOCKET_NULL || enet_socket_bind(m_TestSocket, &addr) < 0)
{
// error, abort
if (m_TestSocket != ENET_SOCKET_NULL)
{
enet_socket_destroy(m_TestSocket);
m_TestSocket = ENET_SOCKET_NULL;
}
return;
}
enet_socket_set_option(m_TestSocket, ENET_SOCKOPT_NONBLOCK, 1);
// create holepunch packet
TraversalPacket packet = {};
packet.type = TraversalPacketType::Ping;
packet.ping.hostId = m_HostId;
packet.requestId = Common::Random::GenerateValue<TraversalRequestId>();
// create buffer
ENetBuffer buf;
buf.data = &packet;
buf.dataLength = sizeof(packet);
// send to alt port
ENetAddress altAddress = m_ServerAddress;
altAddress.port = m_portAlt;
// set up ttl and send
int oldttl;
enet_socket_get_option(m_TestSocket, ENET_SOCKOPT_TTL, &oldttl);
enet_socket_set_option(m_TestSocket, ENET_SOCKOPT_TTL, m_ttl);
if (enet_socket_send(m_TestSocket, &altAddress, &buf, 1) == -1)
{
// error, abort
enet_socket_destroy(m_TestSocket);
m_TestSocket = ENET_SOCKET_NULL;
return;
}
enet_socket_set_option(m_TestSocket, ENET_SOCKOPT_TTL, oldttl);
// send the test request
packet.type = TraversalPacketType::TestPlease;
m_TestRequestId = SendTraversalPacket(packet);
}
void TraversalClient::HandleTraversalTest()
{
if (m_TestSocket != ENET_SOCKET_NULL)
{
// check for packet on test socket (with timeout)
u32 deadline = enet_time_get() + 50;
u32 waitCondition;
do
{
waitCondition = ENET_SOCKET_WAIT_RECEIVE | ENET_SOCKET_WAIT_INTERRUPT;
u32 currentTime = enet_time_get();
if (currentTime > deadline ||
enet_socket_wait(m_TestSocket, &waitCondition, deadline - currentTime) != 0)
{
// error or timeout, exit the loop and assume test failure
waitCondition = 0;
break;
}
else if (waitCondition & ENET_SOCKET_WAIT_RECEIVE)
{
// try reading the packet and see if it's relevant
ENetAddress raddr;
TraversalPacket packet;
ENetBuffer buf;
buf.data = &packet;
buf.dataLength = sizeof(packet);
int rv = enet_socket_receive(m_TestSocket, &raddr, &buf, 1);
if (rv < 0)
{
// error, exit the loop and assume test failure
waitCondition = 0;
break;
}
else if (rv < int(sizeof(packet)) || raddr.host != m_ServerAddress.host ||
raddr.host != m_portAlt || packet.requestId != m_TestRequestId)
{
// irrelevant packet, ignore
continue;
}
}
} while (waitCondition & ENET_SOCKET_WAIT_INTERRUPT);
// regardless of what happens next, we can throw out the socket
enet_socket_destroy(m_TestSocket);
m_TestSocket = ENET_SOCKET_NULL;
if (waitCondition & ENET_SOCKET_WAIT_RECEIVE)
{
// success, we can stop now
m_ttlReady = true;
m_Client->OnTtlDetermined(m_ttl);
}
else
{
// fail, increment and retry
if (++m_ttl < 32)
NewTraversalTest();
}
}
}
TraversalRequestId TraversalClient::SendTraversalPacket(const TraversalPacket& packet)
{
OutgoingTraversalPacketInfo info;
@ -299,7 +423,7 @@ int ENET_CALLBACK TraversalClient::InterceptCallback(ENetHost* host, ENetEvent*
&host->receivedAddress) ||
(host->receivedDataLength == 1 && host->receivedData[0] == 0))
{
event->type = (ENetEventType)42;
event->type = static_cast<ENetEventType>(Common::ENet::SKIPPABLE_EVENT);
return 1;
}
return 0;
@ -313,15 +437,19 @@ ENet::ENetHostPtr g_MainNetHost;
// explicitly requested.
static std::string g_OldServer;
static u16 g_OldServerPort;
static u16 g_OldServerPortAlt;
static u16 g_OldListenPort;
bool EnsureTraversalClient(const std::string& server, u16 server_port, u16 listen_port)
bool EnsureTraversalClient(const std::string& server, u16 server_port, u16 server_port_alt,
u16 listen_port)
{
if (!g_MainNetHost || !g_TraversalClient || server != g_OldServer ||
server_port != g_OldServerPort || listen_port != g_OldListenPort)
server_port != g_OldServerPort || server_port_alt != g_OldServerPortAlt ||
listen_port != g_OldListenPort)
{
g_OldServer = server;
g_OldServerPort = server_port;
g_OldServerPortAlt = server_port_alt;
g_OldListenPort = listen_port;
ENetAddress addr = {ENET_HOST_ANY, listen_port};
@ -337,7 +465,8 @@ bool EnsureTraversalClient(const std::string& server, u16 server_port, u16 liste
}
host->mtu = std::min(host->mtu, NetPlay::MAX_ENET_MTU);
g_MainNetHost = std::move(host);
g_TraversalClient.reset(new TraversalClient(g_MainNetHost.get(), server, server_port));
g_TraversalClient.reset(
new TraversalClient(g_MainNetHost.get(), server, server_port, server_port_alt));
}
return true;
}

View file

@ -24,6 +24,7 @@ public:
virtual void OnTraversalStateChanged() = 0;
virtual void OnConnectReady(ENetAddress addr) = 0;
virtual void OnConnectFailed(TraversalConnectFailedReason reason) = 0;
virtual void OnTtlDetermined(u8 ttl) = 0;
};
class TraversalClient
@ -43,7 +44,8 @@ public:
SocketSendError,
ResendTimeout,
};
TraversalClient(ENetHost* netHost, const std::string& server, const u16 port);
TraversalClient(ENetHost* netHost, const std::string& server, const u16 port,
const u16 port_alt = 0);
~TraversalClient();
TraversalHostId GetHostID() const;
@ -79,6 +81,9 @@ private:
void HandlePing();
static int ENET_CALLBACK InterceptCallback(ENetHost* host, ENetEvent* event);
void NewTraversalTest();
void HandleTraversalTest();
ENetHost* m_NetHost;
TraversalHostId m_HostId{};
TraversalInetAddress m_external_address{};
@ -90,7 +95,13 @@ private:
ENetAddress m_ServerAddress{};
std::string m_Server;
u16 m_port;
u16 m_portAlt;
u32 m_PingTime = 0;
ENetSocket m_TestSocket = ENET_SOCKET_NULL;
TraversalRequestId m_TestRequestId = 0;
u8 m_ttl = 2;
bool m_ttlReady = false;
};
extern std::unique_ptr<TraversalClient> g_TraversalClient;
@ -98,6 +109,7 @@ extern std::unique_ptr<TraversalClient> g_TraversalClient;
extern ENet::ENetHostPtr g_MainNetHost;
// Create g_TraversalClient and g_MainNetHost if necessary.
bool EnsureTraversalClient(const std::string& server, u16 server_port, u16 listen_port = 0);
bool EnsureTraversalClient(const std::string& server, u16 server_port, u16 server_port_alt = 0,
u16 listen_port = 0);
void ReleaseTraversalClient();
} // namespace Common

View file

@ -31,6 +31,10 @@ enum class TraversalPacketType : u8
ConnectReady = 6,
// [s->c] Alternately, the server might not have heard of this host.
ConnectFailed = 7,
// [c->s] Perform a traveral test. This will send two acks:
// one via the server's alt port, and one to the address corresponding to
// the given host ID.
TestPlease = 8,
};
constexpr u8 TraversalProtoVersion = 0;
@ -91,6 +95,10 @@ struct TraversalPacket
TraversalRequestId requestId;
TraversalConnectFailedReason reason;
} connectFailed;
struct
{
TraversalHostId hostId;
} testPlease;
};
};
#pragma pack(pop)

View file

@ -9,13 +9,17 @@
#include <cstring>
#include <fcntl.h>
#include <netinet/in.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <tuple>
#include <unistd.h>
#include <unordered_map>
#include <utility>
#include <vector>
#include <fmt/format.h>
#ifdef HAVE_LIBSYSTEMD
#include <systemd/sd-daemon.h>
#endif
@ -26,6 +30,7 @@
#define DEBUG 0
#define NUMBER_OF_TRIES 5
#define PORT 6262
#define PORT_ALT 6226
static u64 currentTime;
@ -33,6 +38,7 @@ struct OutgoingPacketInfo
{
Common::TraversalPacket packet;
Common::TraversalRequestId misc;
bool fromAlt;
sockaddr_in6 dest;
int tries;
u64 sendTime;
@ -81,12 +87,12 @@ retry:
}
}
#if DEBUG
printf("failed to find key '");
fmt::print("failed to find key '");
for (size_t i = 0; i < sizeof(key); i++)
{
printf("%02x", ((u8*)&key)[i]);
fmt::print("{:02x}", ((u8*)&key)[i]);
}
printf("'\n");
fmt::print("'\n");
#endif
result.found = false;
return result;
@ -119,6 +125,7 @@ using ConnectedClients =
using OutgoingPackets = std::unordered_map<Common::TraversalRequestId, OutgoingPacketInfo>;
static int sock;
static int sockAlt;
static OutgoingPackets outgoingPackets;
static ConnectedClients connectedClients;
@ -126,7 +133,7 @@ static Common::TraversalInetAddress MakeInetAddress(const sockaddr_in6& addr)
{
if (addr.sin6_family != AF_INET6)
{
fprintf(stderr, "bad sockaddr_in6\n");
fmt::print(stderr, "bad sockaddr_in6\n");
exit(1);
}
u32* words = (u32*)addr.sin6_addr.s6_addr;
@ -172,39 +179,41 @@ static sockaddr_in6 MakeSinAddr(const Common::TraversalInetAddress& addr)
static void GetRandomHostId(Common::TraversalHostId* hostId)
{
char buf[9];
char buf[9]{};
const u32 num = Common::Random::GenerateValue<u32>();
sprintf(buf, "%08x", num);
fmt::format_to_n(buf, sizeof(buf) - 1, "{:08x}", num);
memcpy(hostId->data(), buf, 8);
}
static const char* SenderName(sockaddr_in6* addr)
{
static char buf[INET6_ADDRSTRLEN + 10];
static char buf[INET6_ADDRSTRLEN + 10]{};
inet_ntop(PF_INET6, &addr->sin6_addr, buf, sizeof(buf));
sprintf(buf + strlen(buf), ":%d", ntohs(addr->sin6_port));
fmt::format_to(buf + strlen(buf), ":{}", ntohs(addr->sin6_port));
return buf;
}
static void TrySend(const void* buffer, size_t size, sockaddr_in6* addr)
static void TrySend(const void* buffer, size_t size, sockaddr_in6* addr, bool fromAlt)
{
#if DEBUG
const auto* packet = static_cast<const Common::TraversalPacket*>(buffer);
printf("-> %d %llu %s\n", static_cast<int>(packet->type),
static_cast<long long>(packet->requestId), SenderName(addr));
fmt::print("{}-> {} {} {}\n", fromAlt ? "alt " : "", static_cast<int>(packet->type),
static_cast<long long>(packet->requestId), SenderName(addr));
#endif
if ((size_t)sendto(sock, buffer, size, 0, (sockaddr*)addr, sizeof(*addr)) != size)
if ((size_t)sendto(fromAlt ? sockAlt : sock, buffer, size, 0, (sockaddr*)addr, sizeof(*addr)) !=
size)
{
perror("sendto");
}
}
static Common::TraversalPacket* AllocPacket(const sockaddr_in6& dest,
static Common::TraversalPacket* AllocPacket(const sockaddr_in6& dest, bool fromAlt,
Common::TraversalRequestId misc = 0)
{
Common::TraversalRequestId requestId{};
Common::Random::Generate(&requestId, sizeof(requestId));
OutgoingPacketInfo* info = &outgoingPackets[requestId];
info->fromAlt = fromAlt;
info->dest = dest;
info->misc = misc;
info->tries = 0;
@ -219,12 +228,13 @@ static void SendPacket(OutgoingPacketInfo* info)
{
info->tries++;
info->sendTime = currentTime;
TrySend(&info->packet, sizeof(info->packet), &info->dest);
TrySend(&info->packet, sizeof(info->packet), &info->dest, info->fromAlt);
}
static void ResendPackets()
{
std::vector<std::pair<Common::TraversalInetAddress, Common::TraversalRequestId>> todoFailures;
std::vector<std::tuple<Common::TraversalInetAddress, bool, Common::TraversalRequestId>>
todoFailures;
todoFailures.clear();
for (auto it = outgoingPackets.begin(); it != outgoingPackets.end();)
{
@ -235,7 +245,8 @@ static void ResendPackets()
{
if (info->packet.type == Common::TraversalPacketType::PleaseSendPacket)
{
todoFailures.push_back(std::make_pair(info->packet.pleaseSendPacket.address, info->misc));
todoFailures.push_back(
std::make_tuple(info->packet.pleaseSendPacket.address, info->fromAlt, info->misc));
}
it = outgoingPackets.erase(it);
continue;
@ -250,18 +261,18 @@ static void ResendPackets()
for (const auto& p : todoFailures)
{
Common::TraversalPacket* fail = AllocPacket(MakeSinAddr(p.first));
Common::TraversalPacket* fail = AllocPacket(MakeSinAddr(std::get<0>(p)), std::get<1>(p));
fail->type = Common::TraversalPacketType::ConnectFailed;
fail->connectFailed.requestId = p.second;
fail->connectFailed.requestId = std::get<2>(p);
fail->connectFailed.reason = Common::TraversalConnectFailedReason::ClientDidntRespond;
}
}
static void HandlePacket(Common::TraversalPacket* packet, sockaddr_in6* addr)
static void HandlePacket(Common::TraversalPacket* packet, sockaddr_in6* addr, bool toAlt)
{
#if DEBUG
printf("<- %d %llu %s\n", static_cast<int>(packet->type),
static_cast<long long>(packet->requestId), SenderName(addr));
fmt::print("<- {} {} {}\n", static_cast<int>(packet->type),
static_cast<long long>(packet->requestId), SenderName(addr));
#endif
bool packetOk = true;
switch (packet->type)
@ -276,7 +287,7 @@ static void HandlePacket(Common::TraversalPacket* packet, sockaddr_in6* addr)
if (info->packet.type == Common::TraversalPacketType::PleaseSendPacket)
{
auto* ready = AllocPacket(MakeSinAddr(info->packet.pleaseSendPacket.address));
auto* ready = AllocPacket(MakeSinAddr(info->packet.pleaseSendPacket.address), toAlt);
if (packet->ack.ok)
{
ready->type = Common::TraversalPacketType::ConnectReady;
@ -303,7 +314,7 @@ static void HandlePacket(Common::TraversalPacket* packet, sockaddr_in6* addr)
case Common::TraversalPacketType::HelloFromClient:
{
u8 ok = packet->helloFromClient.protoVersion <= Common::TraversalProtoVersion;
Common::TraversalPacket* reply = AllocPacket(*addr);
Common::TraversalPacket* reply = AllocPacket(*addr, toAlt);
reply->type = Common::TraversalPacketType::HelloFromServer;
reply->helloFromServer.ok = ok;
if (ok)
@ -336,22 +347,38 @@ static void HandlePacket(Common::TraversalPacket* packet, sockaddr_in6* addr)
auto r = EvictFind(connectedClients, hostId);
if (!r.found)
{
Common::TraversalPacket* reply = AllocPacket(*addr);
Common::TraversalPacket* reply = AllocPacket(*addr, toAlt);
reply->type = Common::TraversalPacketType::ConnectFailed;
reply->connectFailed.requestId = packet->requestId;
reply->connectFailed.reason = Common::TraversalConnectFailedReason::NoSuchClient;
}
else
{
Common::TraversalPacket* please = AllocPacket(MakeSinAddr(*r.value), packet->requestId);
Common::TraversalPacket* please =
AllocPacket(MakeSinAddr(*r.value), toAlt, packet->requestId);
please->type = Common::TraversalPacketType::PleaseSendPacket;
please->pleaseSendPacket.address = MakeInetAddress(*addr);
}
break;
}
case Common::TraversalPacketType::TestPlease:
{
Common::TraversalHostId& hostId = packet->testPlease.hostId;
auto r = EvictFind(connectedClients, hostId);
if (r.found)
{
Common::TraversalPacket ack = {};
ack.type = Common::TraversalPacketType::Ack;
ack.requestId = packet->requestId;
ack.ack.ok = true;
sockaddr_in6 mainAddr = MakeSinAddr(*r.value);
TrySend(&ack, sizeof(ack), &mainAddr, toAlt);
}
break;
}
default:
fprintf(stderr, "received unknown packet type %d from %s\n", static_cast<int>(packet->type),
SenderName(addr));
fmt::print(stderr, "received unknown packet type {} from {}\n", static_cast<int>(packet->type),
SenderName(addr));
break;
}
if (packet->type != Common::TraversalPacketType::Ack)
@ -360,7 +387,8 @@ static void HandlePacket(Common::TraversalPacket* packet, sockaddr_in6* addr)
ack.type = Common::TraversalPacketType::Ack;
ack.requestId = packet->requestId;
ack.ack.ok = packetOk;
TrySend(&ack, sizeof(ack), addr);
TrySend(&ack, sizeof(ack), addr,
packet->type != Common::TraversalPacketType::TestPlease ? toAlt : !toAlt);
}
}
@ -373,6 +401,12 @@ int main()
perror("socket");
return 1;
}
sockAlt = socket(PF_INET6, SOCK_DGRAM, 0);
if (sockAlt == -1)
{
perror("socket alt");
return 1;
}
int no = 0;
rv = setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, &no, sizeof(no));
if (rv < 0)
@ -380,6 +414,12 @@ int main()
perror("setsockopt IPV6_V6ONLY");
return 1;
}
rv = setsockopt(sockAlt, IPPROTO_IPV6, IPV6_V6ONLY, &no, sizeof(no));
if (rv < 0)
{
perror("setsockopt IPV6_V6ONLY alt");
return 1;
}
in6_addr any = IN6ADDR_ANY_INIT;
sockaddr_in6 addr;
#ifdef SIN6_LEN
@ -397,6 +437,13 @@ int main()
perror("bind");
return 1;
}
addr.sin6_port = htons(PORT_ALT);
rv = bind(sockAlt, (sockaddr*)&addr, sizeof(addr));
if (rv < 0)
{
perror("bind alt");
return 1;
}
timeval tv;
tv.tv_sec = 0;
@ -407,19 +454,55 @@ int main()
perror("setsockopt SO_RCVTIMEO");
return 1;
}
rv = setsockopt(sockAlt, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));
if (rv < 0)
{
perror("setsockopt SO_RCVTIMEO alt");
return 1;
}
#ifdef HAVE_LIBSYSTEMD
sd_notifyf(0, "READY=1\nSTATUS=Listening on port %d", PORT);
sd_notifyf(0, "READY=1\nSTATUS=Listening on port %d (alt port: %d)", PORT, PORT_ALT);
#endif
while (true)
{
tv.tv_sec = 0;
tv.tv_usec = 300000;
fd_set readSet;
FD_ZERO(&readSet);
FD_SET(sock, &readSet);
FD_SET(sockAlt, &readSet);
rv = select(std::max(sock, sockAlt) + 1, &readSet, nullptr, nullptr, &tv);
if (rv < 0)
{
if (errno != EINTR && errno != EAGAIN)
{
perror("recvfrom");
return 1;
}
}
int recvsock;
if (FD_ISSET(sock, &readSet))
{
recvsock = sock;
}
else if (FD_ISSET(sockAlt, &readSet))
{
recvsock = sockAlt;
}
else
{
ResendPackets();
continue;
}
sockaddr_in6 raddr;
socklen_t addrLen = sizeof(raddr);
Common::TraversalPacket packet{};
// note: switch to recvmmsg (yes, mmsg) if this becomes
// expensive
rv = recvfrom(sock, &packet, sizeof(packet), 0, (sockaddr*)&raddr, &addrLen);
rv = recvfrom(recvsock, &packet, sizeof(packet), 0, (sockaddr*)&raddr, &addrLen);
currentTime = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now().time_since_epoch())
.count();
@ -433,11 +516,11 @@ int main()
}
else if ((size_t)rv < sizeof(packet))
{
fprintf(stderr, "received short packet from %s\n", SenderName(&raddr));
fmt::print(stderr, "received short packet from {}\n", SenderName(&raddr));
}
else
{
HandlePacket(&packet, &raddr);
HandlePacket(&packet, &raddr, recvsock == sockAlt);
}
ResendPackets();
#ifdef HAVE_LIBSYSTEMD