Move shader caches to VideoCommon

This commit is contained in:
Stenzek 2018-02-25 01:15:35 +10:00
parent 24df896eb8
commit dec0c3bce8
48 changed files with 1448 additions and 3346 deletions
Source/Core/VideoBackends/OGL

View file

@ -33,8 +33,6 @@
#include "VideoCommon/ImageWrite.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/UberShaderPixel.h"
#include "VideoCommon/UberShaderVertex.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoCommon.h"
@ -43,8 +41,6 @@ namespace OGL
{
static constexpr u32 UBO_LENGTH = 32 * 1024 * 1024;
std::unique_ptr<ProgramShaderCache::SharedContextAsyncShaderCompiler>
ProgramShaderCache::s_async_compiler;
u32 ProgramShaderCache::s_ubo_buffer_size;
s32 ProgramShaderCache::s_ubo_align;
GLuint ProgramShaderCache::s_attributeless_VBO = 0;
@ -54,17 +50,9 @@ GLuint ProgramShaderCache::s_last_VAO = 0;
static std::unique_ptr<StreamBuffer> s_buffer;
static int num_failures = 0;
static LinearDiskCache<SHADERUID, u8> s_program_disk_cache;
static LinearDiskCache<UBERSHADERUID, u8> s_uber_program_disk_cache;
static GLuint CurrentProgram = 0;
ProgramShaderCache::PCache ProgramShaderCache::pshaders;
ProgramShaderCache::UberPCache ProgramShaderCache::ubershaders;
ProgramShaderCache::PipelineProgramMap ProgramShaderCache::pipelineprograms;
std::mutex ProgramShaderCache::pipelineprogramlock;
ProgramShaderCache::PCacheEntry* ProgramShaderCache::last_entry;
ProgramShaderCache::PCacheEntry* ProgramShaderCache::last_uber_entry;
SHADERUID ProgramShaderCache::last_uid;
UBERSHADERUID ProgramShaderCache::last_uber_uid;
static std::string s_glsl_header = "";
static std::string GetGLSLVersionString()
@ -270,143 +258,6 @@ void ProgramShaderCache::UploadConstants()
}
}
SHADER* ProgramShaderCache::SetShader(PrimitiveType primitive_type,
const GLVertexFormat* vertex_format)
{
if (g_ActiveConfig.bDisableSpecializedShaders)
return SetUberShader(primitive_type, vertex_format);
SHADERUID uid;
std::memset(&uid, 0, sizeof(uid));
uid.puid = GetPixelShaderUid();
uid.vuid = GetVertexShaderUid();
uid.guid = GetGeometryShaderUid(primitive_type);
ClearUnusedPixelShaderUidBits(APIType::OpenGL, &uid.puid);
// Check if the shader is already set
if (last_entry && uid == last_uid)
{
last_entry->shader.Bind();
BindVertexFormat(vertex_format);
return &last_entry->shader;
}
// Check if shader is already in cache
auto iter = pshaders.find(uid);
if (iter != pshaders.end())
{
PCacheEntry* entry = &iter->second;
if (entry->pending)
return SetUberShader(primitive_type, vertex_format);
last_uid = uid;
last_entry = entry;
BindVertexFormat(vertex_format);
last_entry->shader.Bind();
return &last_entry->shader;
}
// Compile the new shader program.
PCacheEntry& newentry = pshaders[uid];
newentry.in_cache = false;
newentry.pending = false;
// Can we background compile this shader? Requires background shader compiling to be enabled,
// and all ubershaders to have been successfully compiled.
if (g_ActiveConfig.CanBackgroundCompileShaders() && !ubershaders.empty() && s_async_compiler)
{
newentry.pending = true;
s_async_compiler->QueueWorkItem(s_async_compiler->CreateWorkItem<ShaderCompileWorkItem>(uid));
return SetUberShader(primitive_type, vertex_format);
}
// Synchronous shader compiling.
ShaderHostConfig host_config = ShaderHostConfig::GetCurrent();
ShaderCode vcode = GenerateVertexShaderCode(APIType::OpenGL, host_config, uid.vuid.GetUidData());
ShaderCode pcode = GeneratePixelShaderCode(APIType::OpenGL, host_config, uid.puid.GetUidData());
ShaderCode gcode;
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders &&
!uid.guid.GetUidData()->IsPassthrough())
gcode = GenerateGeometryShaderCode(APIType::OpenGL, host_config, uid.guid.GetUidData());
if (!CompileShader(newentry.shader, vcode.GetBuffer(), pcode.GetBuffer(), gcode.GetBuffer()))
return nullptr;
INCSTAT(stats.numPixelShadersCreated);
SETSTAT(stats.numPixelShadersAlive, pshaders.size());
last_uid = uid;
last_entry = &newentry;
BindVertexFormat(vertex_format);
last_entry->shader.Bind();
return &last_entry->shader;
}
SHADER* ProgramShaderCache::SetUberShader(PrimitiveType primitive_type,
const GLVertexFormat* vertex_format)
{
UBERSHADERUID uid;
std::memset(&uid, 0, sizeof(uid));
uid.puid = UberShader::GetPixelShaderUid();
uid.vuid = UberShader::GetVertexShaderUid();
uid.guid = GetGeometryShaderUid(primitive_type);
UberShader::ClearUnusedPixelShaderUidBits(APIType::OpenGL, &uid.puid);
// We need to use the ubershader vertex format with all attributes enabled.
// Otherwise, the NV driver can generate variants for the vertex shaders.
const GLVertexFormat* uber_vertex_format = static_cast<const GLVertexFormat*>(
VertexLoaderManager::GetUberVertexFormat(vertex_format->GetVertexDeclaration()));
// Check if the shader is already set
if (last_uber_entry && last_uber_uid == uid)
{
BindVertexFormat(uber_vertex_format);
last_uber_entry->shader.Bind();
return &last_uber_entry->shader;
}
// Check if shader is already in cache
auto iter = ubershaders.find(uid);
if (iter != ubershaders.end())
{
PCacheEntry* entry = &iter->second;
last_uber_uid = uid;
last_uber_entry = entry;
BindVertexFormat(uber_vertex_format);
last_uber_entry->shader.Bind();
return &last_uber_entry->shader;
}
// Make an entry in the table
PCacheEntry& newentry = ubershaders[uid];
newentry.in_cache = false;
newentry.pending = false;
ShaderHostConfig host_config = ShaderHostConfig::GetCurrent();
ShaderCode vcode =
UberShader::GenVertexShader(APIType::OpenGL, host_config, uid.vuid.GetUidData());
ShaderCode pcode =
UberShader::GenPixelShader(APIType::OpenGL, host_config, uid.puid.GetUidData());
ShaderCode gcode;
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders &&
!uid.guid.GetUidData()->IsPassthrough())
{
gcode = GenerateGeometryShaderCode(APIType::OpenGL, host_config, uid.guid.GetUidData());
}
if (!CompileShader(newentry.shader, vcode.GetBuffer(), pcode.GetBuffer(), gcode.GetBuffer()))
{
GFX_DEBUGGER_PAUSE_AT(NEXT_ERROR, true);
return nullptr;
}
last_uber_uid = uid;
last_uber_entry = &newentry;
BindVertexFormat(uber_vertex_format);
last_uber_entry->shader.Bind();
return &last_uber_entry->shader;
}
bool ProgramShaderCache::CompileShader(SHADER& shader, const std::string& vcode,
const std::string& pcode, const std::string& gcode)
{
@ -620,11 +471,6 @@ bool ProgramShaderCache::CheckProgramLinkResult(GLuint id, const std::string& vc
return true;
}
ProgramShaderCache::PCacheEntry ProgramShaderCache::GetShaderProgram()
{
return *last_entry;
}
void ProgramShaderCache::Init()
{
// We have to get the UBO alignment here because
@ -642,93 +488,14 @@ void ProgramShaderCache::Init()
// Then once more to get bytes
s_buffer = StreamBuffer::Create(GL_UNIFORM_BUFFER, UBO_LENGTH);
// The GPU shader code appears to be context-specific on Mesa/i965.
// This means that if we compiled the ubershaders asynchronously, they will be recompiled
// on the main thread the first time they are used, causing stutter. Nouveau has been
// reported to crash if draw calls are invoked on the shared context threads. For now,
// disable asynchronous compilation on Mesa.
if (!DriverDetails::HasBug(DriverDetails::BUG_SHARED_CONTEXT_SHADER_COMPILATION))
s_async_compiler = std::make_unique<SharedContextAsyncShaderCompiler>();
// Read our shader cache, only if supported and enabled
if (g_ogl_config.bSupportsGLSLCache && g_ActiveConfig.bShaderCache)
LoadProgramBinaries();
CreateHeader();
CreateAttributelessVAO();
CurrentProgram = 0;
last_entry = nullptr;
last_uber_entry = nullptr;
if (g_ActiveConfig.CanPrecompileUberShaders())
{
if (s_async_compiler)
s_async_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderPrecompilerThreads());
PrecompileUberShaders();
}
if (s_async_compiler)
{
// No point using the async compiler without workers.
s_async_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads());
if (!s_async_compiler->HasWorkerThreads())
s_async_compiler.reset();
}
}
void ProgramShaderCache::RetrieveAsyncShaders()
{
if (s_async_compiler)
s_async_compiler->RetrieveWorkItems();
}
void ProgramShaderCache::Reload()
{
if (s_async_compiler)
{
s_async_compiler->WaitUntilCompletion();
s_async_compiler->RetrieveWorkItems();
}
const bool use_cache = g_ogl_config.bSupportsGLSLCache && g_ActiveConfig.bShaderCache;
if (use_cache)
SaveProgramBinaries();
s_program_disk_cache.Close();
s_uber_program_disk_cache.Close();
DestroyShaders();
if (use_cache)
LoadProgramBinaries();
if (g_ActiveConfig.CanPrecompileUberShaders())
PrecompileUberShaders();
CurrentProgram = 0;
last_entry = nullptr;
last_uber_entry = nullptr;
last_uid = {};
last_uber_uid = {};
}
void ProgramShaderCache::Shutdown()
{
if (s_async_compiler)
{
s_async_compiler->WaitUntilCompletion();
s_async_compiler->StopWorkerThreads();
s_async_compiler->RetrieveWorkItems();
s_async_compiler.reset();
}
// store all shaders in cache on disk
if (g_ogl_config.bSupportsGLSLCache && g_ActiveConfig.bShaderCache)
SaveProgramBinaries();
s_program_disk_cache.Close();
s_uber_program_disk_cache.Close();
DestroyShaders();
s_buffer.reset();
glBindVertexArray(0);
@ -781,134 +548,6 @@ void ProgramShaderCache::InvalidateLastProgram()
CurrentProgram = 0;
}
GLuint ProgramShaderCache::CreateProgramFromBinary(const u8* value, u32 value_size)
{
const u8* binary = value + sizeof(GLenum);
GLint binary_size = value_size - sizeof(GLenum);
GLenum prog_format;
std::memcpy(&prog_format, value, sizeof(GLenum));
GLuint progid = glCreateProgram();
glProgramBinary(progid, prog_format, binary, binary_size);
GLint success;
glGetProgramiv(progid, GL_LINK_STATUS, &success);
if (!success)
{
glDeleteProgram(progid);
return 0;
}
return progid;
}
bool ProgramShaderCache::CreateCacheEntryFromBinary(PCacheEntry* entry, const u8* value,
u32 value_size)
{
entry->in_cache = true;
entry->pending = false;
entry->shader.glprogid = CreateProgramFromBinary(value, value_size);
if (entry->shader.glprogid == 0)
return false;
entry->shader.SetProgramVariables();
return true;
}
void ProgramShaderCache::LoadProgramBinaries()
{
GLint Supported;
glGetIntegerv(GL_NUM_PROGRAM_BINARY_FORMATS, &Supported);
if (!Supported)
{
ERROR_LOG(VIDEO, "GL_ARB_get_program_binary is supported, but no binary format is known. So "
"disable shader cache.");
g_ogl_config.bSupportsGLSLCache = false;
}
else
{
// Load game-specific shaders.
std::string cache_filename =
GetDiskShaderCacheFileName(APIType::OpenGL, "ProgramBinaries", true, true);
ProgramShaderCacheInserter<SHADERUID> inserter(pshaders);
s_program_disk_cache.OpenAndRead(cache_filename, inserter);
// Load global ubershaders.
cache_filename =
GetDiskShaderCacheFileName(APIType::OpenGL, "UberProgramBinaries", false, true);
ProgramShaderCacheInserter<UBERSHADERUID> uber_inserter(ubershaders);
s_uber_program_disk_cache.OpenAndRead(cache_filename, uber_inserter);
}
SETSTAT(stats.numPixelShadersAlive, pshaders.size());
}
static bool GetProgramBinary(const ProgramShaderCache::PCacheEntry& entry, std::vector<u8>& data)
{
// Clear any prior error code
glGetError();
GLint link_status = GL_FALSE, delete_status = GL_TRUE, binary_size = 0;
glGetProgramiv(entry.shader.glprogid, GL_LINK_STATUS, &link_status);
glGetProgramiv(entry.shader.glprogid, GL_DELETE_STATUS, &delete_status);
glGetProgramiv(entry.shader.glprogid, GL_PROGRAM_BINARY_LENGTH, &binary_size);
if (glGetError() != GL_NO_ERROR || link_status == GL_FALSE || delete_status == GL_TRUE ||
binary_size == 0)
{
return false;
}
data.resize(binary_size + sizeof(GLenum));
GLsizei length = binary_size;
GLenum prog_format;
glGetProgramBinary(entry.shader.glprogid, binary_size, &length, &prog_format,
&data[sizeof(GLenum)]);
if (glGetError() != GL_NO_ERROR)
return false;
std::memcpy(&data[0], &prog_format, sizeof(prog_format));
return true;
}
template <typename CacheMapType, typename DiskCacheType>
static void SaveProgramBinaryMap(CacheMapType& program_map, DiskCacheType& disk_cache)
{
std::vector<u8> binary_data;
for (auto& entry : program_map)
{
if (entry.second.in_cache || entry.second.pending)
continue;
// Entry is now in cache (even if it fails, we don't want to try to save it again).
entry.second.in_cache = true;
if (!GetProgramBinary(entry.second, binary_data))
continue;
disk_cache.Append(entry.first, &binary_data[0], static_cast<u32>(binary_data.size()));
}
disk_cache.Sync();
}
void ProgramShaderCache::SaveProgramBinaries()
{
SaveProgramBinaryMap(pshaders, s_program_disk_cache);
SaveProgramBinaryMap(ubershaders, s_uber_program_disk_cache);
}
void ProgramShaderCache::DestroyShaders()
{
glUseProgram(0);
for (auto& entry : pshaders)
entry.second.Destroy();
pshaders.clear();
for (auto& entry : ubershaders)
entry.second.Destroy();
ubershaders.clear();
}
const PipelineProgram* ProgramShaderCache::GetPipelineProgram(const OGLShader* vertex_shader,
const OGLShader* geometry_shader,
const OGLShader* pixel_shader)
@ -1144,346 +783,4 @@ void ProgramShaderCache::CreateHeader()
v > GlslEs300 ? "precision highp sampler2DMS;" : "",
v >= GlslEs310 ? "precision highp image2DArray;" : "");
}
void ProgramShaderCache::PrecompileUberShaders()
{
bool success = true;
UberShader::EnumerateVertexShaderUids([&](const UberShader::VertexShaderUid& vuid) {
UberShader::EnumeratePixelShaderUids([&](const UberShader::PixelShaderUid& puid) {
// UIDs must have compatible texgens, a mismatching combination will never be queried.
if (vuid.GetUidData()->num_texgens != puid.GetUidData()->num_texgens)
return;
EnumerateGeometryShaderUids([&](const GeometryShaderUid& guid) {
if (guid.GetUidData()->numTexGens != vuid.GetUidData()->num_texgens)
return;
UBERSHADERUID uid;
std::memcpy(&uid.vuid, &vuid, sizeof(uid.vuid));
std::memcpy(&uid.puid, &puid, sizeof(uid.puid));
std::memcpy(&uid.guid, &guid, sizeof(uid.guid));
// The ubershader may already exist if shader caching is enabled.
if (!success || ubershaders.find(uid) != ubershaders.end())
return;
PCacheEntry& entry = ubershaders[uid];
entry.in_cache = false;
entry.pending = false;
// Multi-context path?
if (s_async_compiler)
{
entry.pending = true;
s_async_compiler->QueueWorkItem(
s_async_compiler->CreateWorkItem<UberShaderCompileWorkItem>(uid));
return;
}
ShaderHostConfig host_config = ShaderHostConfig::GetCurrent();
ShaderCode vcode =
UberShader::GenVertexShader(APIType::OpenGL, host_config, uid.vuid.GetUidData());
ShaderCode pcode =
UberShader::GenPixelShader(APIType::OpenGL, host_config, uid.puid.GetUidData());
ShaderCode gcode;
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders &&
!uid.guid.GetUidData()->IsPassthrough())
{
GenerateGeometryShaderCode(APIType::OpenGL, host_config, uid.guid.GetUidData());
}
// Always background compile, even when it's not supported.
// This way hopefully the driver can still compile the shaders in parallel.
if (!CompileShader(entry.shader, vcode.GetBuffer(), pcode.GetBuffer(), gcode.GetBuffer()))
{
// Stop compiling shaders if any of them fail, no point continuing.
success = false;
return;
}
});
});
});
if (s_async_compiler)
{
s_async_compiler->WaitUntilCompletion([](size_t completed, size_t total) {
Host_UpdateProgressDialog(GetStringT("Compiling shaders...").c_str(),
static_cast<int>(completed), static_cast<int>(total));
});
s_async_compiler->RetrieveWorkItems();
Host_UpdateProgressDialog("", -1, -1);
}
if (!success)
{
PanicAlert("One or more ubershaders failed to compile. Disabling ubershaders.");
for (auto& it : ubershaders)
it.second.Destroy();
ubershaders.clear();
}
}
bool ProgramShaderCache::SharedContextAsyncShaderCompiler::WorkerThreadInitMainThread(void** param)
{
SharedContextData* ctx_data = new SharedContextData();
ctx_data->context = GLInterface->CreateSharedContext();
if (!ctx_data->context)
{
PanicAlert("Failed to create shared context for shader compiling.");
delete ctx_data;
return false;
}
*param = ctx_data;
return true;
}
bool ProgramShaderCache::SharedContextAsyncShaderCompiler::WorkerThreadInitWorkerThread(void* param)
{
SharedContextData* ctx_data = reinterpret_cast<SharedContextData*>(param);
if (!ctx_data->context->MakeCurrent())
{
PanicAlert("Failed to make shared context current.");
ctx_data->context->Shutdown();
delete ctx_data;
return false;
}
CreatePrerenderArrays(ctx_data);
return true;
}
void ProgramShaderCache::SharedContextAsyncShaderCompiler::WorkerThreadExit(void* param)
{
SharedContextData* ctx_data = reinterpret_cast<SharedContextData*>(param);
DestroyPrerenderArrays(ctx_data);
ctx_data->context->Shutdown();
delete ctx_data;
}
ProgramShaderCache::ShaderCompileWorkItem::ShaderCompileWorkItem(const SHADERUID& uid)
{
std::memcpy(&m_uid, &uid, sizeof(m_uid));
}
bool ProgramShaderCache::ShaderCompileWorkItem::Compile()
{
ShaderHostConfig host_config = ShaderHostConfig::GetCurrent();
ShaderCode vcode =
GenerateVertexShaderCode(APIType::OpenGL, host_config, m_uid.vuid.GetUidData());
ShaderCode pcode = GeneratePixelShaderCode(APIType::OpenGL, host_config, m_uid.puid.GetUidData());
ShaderCode gcode;
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders &&
!m_uid.guid.GetUidData()->IsPassthrough())
gcode = GenerateGeometryShaderCode(APIType::OpenGL, host_config, m_uid.guid.GetUidData());
CompileShader(m_program, vcode.GetBuffer(), pcode.GetBuffer(), gcode.GetBuffer());
DrawPrerenderArray(m_program,
static_cast<PrimitiveType>(m_uid.guid.GetUidData()->primitive_type));
return true;
}
void ProgramShaderCache::ShaderCompileWorkItem::Retrieve()
{
auto iter = pshaders.find(m_uid);
if (iter != pshaders.end() && !iter->second.pending)
{
// Main thread already compiled this shader.
m_program.Destroy();
return;
}
PCacheEntry& entry = pshaders[m_uid];
entry.shader = m_program;
entry.in_cache = false;
entry.pending = false;
}
ProgramShaderCache::UberShaderCompileWorkItem::UberShaderCompileWorkItem(const UBERSHADERUID& uid)
{
std::memcpy(&m_uid, &uid, sizeof(m_uid));
}
bool ProgramShaderCache::UberShaderCompileWorkItem::Compile()
{
ShaderHostConfig host_config = ShaderHostConfig::GetCurrent();
ShaderCode vcode =
UberShader::GenVertexShader(APIType::OpenGL, host_config, m_uid.vuid.GetUidData());
ShaderCode pcode =
UberShader::GenPixelShader(APIType::OpenGL, host_config, m_uid.puid.GetUidData());
ShaderCode gcode;
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders &&
!m_uid.guid.GetUidData()->IsPassthrough())
gcode = GenerateGeometryShaderCode(APIType::OpenGL, host_config, m_uid.guid.GetUidData());
CompileShader(m_program, vcode.GetBuffer(), pcode.GetBuffer(), gcode.GetBuffer());
DrawPrerenderArray(m_program,
static_cast<PrimitiveType>(m_uid.guid.GetUidData()->primitive_type));
return true;
}
void ProgramShaderCache::UberShaderCompileWorkItem::Retrieve()
{
auto iter = ubershaders.find(m_uid);
if (iter != ubershaders.end() && !iter->second.pending)
{
// Main thread already compiled this shader.
m_program.Destroy();
return;
}
PCacheEntry& entry = ubershaders[m_uid];
entry.shader = m_program;
entry.in_cache = false;
entry.pending = false;
}
void ProgramShaderCache::CreatePrerenderArrays(SharedContextData* data)
{
// Create a framebuffer object to render into.
// This is because in EGL, and potentially GLX, we have a surfaceless context.
glGenTextures(1, &data->prerender_FBO_tex);
glBindTexture(GL_TEXTURE_2D_ARRAY, data->prerender_FBO_tex);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_LEVEL, 1);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA, 1, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
glGenTextures(1, &data->prerender_FBO_depth);
glBindTexture(GL_TEXTURE_2D_ARRAY, data->prerender_FBO_depth);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_LEVEL, 1);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_DEPTH_COMPONENT32F, 1, 1, 1, 0, GL_DEPTH_COMPONENT,
GL_FLOAT, nullptr);
glGenFramebuffers(1, &data->prerender_FBO);
glBindFramebuffer(GL_FRAMEBUFFER, data->prerender_FBO);
glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, data->prerender_FBO_tex, 0, 0);
glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, data->prerender_FBO_depth, 0, 0);
// Create VAO for the prerender vertices.
// We don't use the normal VAO map, since we need to change the VBO pointer.
glGenVertexArrays(1, &data->prerender_VAO);
glBindVertexArray(data->prerender_VAO);
// Create and populate the prerender VBO. We need enough space to draw 3 triangles.
static constexpr float vbo_data[] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
constexpr u32 vbo_stride = sizeof(float) * 3;
glGenBuffers(1, &data->prerender_VBO);
glBindBuffer(GL_ARRAY_BUFFER, data->prerender_VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vbo_data), vbo_data, GL_STATIC_DRAW);
// We only need a position in our prerender vertex.
glEnableVertexAttribArray(SHADER_POSITION_ATTRIB);
glVertexAttribPointer(SHADER_POSITION_ATTRIB, 3, GL_FLOAT, GL_FALSE, vbo_stride, nullptr);
// The other attributes have to be active to avoid variant generation.
glEnableVertexAttribArray(SHADER_POSMTX_ATTRIB);
glVertexAttribIPointer(SHADER_POSMTX_ATTRIB, 1, GL_UNSIGNED_BYTE, vbo_stride, nullptr);
for (u32 i = 0; i < 3; i++)
{
glEnableVertexAttribArray(SHADER_NORM0_ATTRIB + i);
glVertexAttribPointer(SHADER_NORM0_ATTRIB + i, 3, GL_FLOAT, GL_FALSE, vbo_stride, nullptr);
}
for (u32 i = 0; i < 2; i++)
{
glEnableVertexAttribArray(SHADER_COLOR0_ATTRIB + i);
glVertexAttribPointer(SHADER_COLOR0_ATTRIB + i, 4, GL_UNSIGNED_BYTE, GL_TRUE, vbo_stride,
nullptr);
}
for (u32 i = 0; i < 8; i++)
{
glEnableVertexAttribArray(SHADER_TEXTURE0_ATTRIB + i);
glVertexAttribPointer(SHADER_TEXTURE0_ATTRIB + i, 3, GL_FLOAT, GL_FALSE, vbo_stride, nullptr);
}
// We need an index buffer to set up the same drawing state on Mesa.
static constexpr u16 ibo_data[] = {0, 1, 2};
glGenBuffers(1, &data->prerender_IBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data->prerender_IBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(ibo_data), ibo_data, GL_STATIC_DRAW);
// Mesa also requires the primitive restart state matches?
if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart)
{
if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGLES3)
{
glEnable(GL_PRIMITIVE_RESTART_FIXED_INDEX);
}
else
{
if (GLExtensions::Version() >= 310)
{
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex(65535);
}
else
{
glEnableClientState(GL_PRIMITIVE_RESTART_NV);
glPrimitiveRestartIndexNV(65535);
}
}
}
}
void ProgramShaderCache::DestroyPrerenderArrays(SharedContextData* data)
{
if (data->prerender_VAO)
{
glDeleteVertexArrays(1, &data->prerender_VAO);
data->prerender_VAO = 0;
}
if (data->prerender_VBO)
{
glDeleteBuffers(1, &data->prerender_VBO);
data->prerender_VBO = 0;
}
if (data->prerender_IBO)
{
glDeleteBuffers(1, &data->prerender_IBO);
data->prerender_IBO = 0;
}
if (data->prerender_FBO)
{
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &data->prerender_FBO);
data->prerender_FBO = 0;
}
if (data->prerender_FBO_tex)
{
glDeleteTextures(1, &data->prerender_FBO_tex);
data->prerender_FBO_tex = 0;
}
if (data->prerender_FBO_depth)
{
glDeleteTextures(1, &data->prerender_FBO_depth);
data->prerender_FBO_depth = 0;
}
}
void ProgramShaderCache::DrawPrerenderArray(const SHADER& shader, PrimitiveType primitive_type)
{
// This is called on a worker thread, so we don't want to use the normal binding process.
glUseProgram(shader.glprogid);
// The number of primitives drawn depends on the type.
switch (primitive_type)
{
case PrimitiveType::Points:
glDrawElements(GL_POINTS, 1, GL_UNSIGNED_SHORT, nullptr);
break;
case PrimitiveType::Lines:
glDrawElements(GL_LINES, 2, GL_UNSIGNED_SHORT, nullptr);
break;
case PrimitiveType::Triangles:
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_SHORT, nullptr);
break;
case PrimitiveType::TriangleStrip:
glDrawElements(GL_TRIANGLE_STRIP, 3, GL_UNSIGNED_SHORT, nullptr);
break;
}
// Has to be finished by the time the main thread picks it up.
GLsync sync = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
glClientWaitSync(sync, GL_SYNC_FLUSH_COMMANDS_BIT, GL_TIMEOUT_IGNORED);
glDeleteSync(sync);
}
} // namespace OGL