There seems to be a race condition between a peripheral device
connecting to the bluetooth controller and it being ready to use.
It's very short and it depends upon the controller, some appear to
connect synchronously and block until the device is ready, others
report the device upon discovery but do not allow communication straight
away. I don't know which is the correct behaviour, or whether it depends
on the peripheral, controller or both. Anyway, Dolphin waits for a
remote to appear and immediately attempts to open the communication
channels, this can fail because the device isn't ready yet, delay, try
again, and it works.
There are other (unlikely) chances the device is busy at random
moments after this initial race condition so it loops around try to
reconnect.
This was inspired by an earlier patch, see here:
https://bugs.dolphin-emu.org/issues/5997#note-20
I can confirm that it works perfectly for me on a bluetooth
controller where otherwise it's impossible to connect (Dell 380
Bluetooth 4.0).
Instead of expecting callers to know how the size of directory file infos
relates to which files are in which directories, filesystems now offer a
GetRoot() method, and file infos offer a way to get their children. As
a bonus, m_FileInfoVector no longer has to be created and kept around
in RAM. Only the file info objects that actually are used are created.
Some callers already have the file info, making the relatively slow
FindFileInfo calls unnecessary. Callers that didn't have the file info
will now need to call FindFileInfo on their own.
Some callers (i.e. ISOProperties) don't want the full path, so giving them
it is unnecessary. Those that do want it can use GetPathFromFSTOffset.
Not storing full paths everywhere also saves a small bit of RAM and is
necessary for a later commit. The code isn't especially pretty right now
(callers need to use FST offsets...) but it'll become better later.
I don't see any reason to disable loading the IPL if bHLE_BS2 is
disabled. bHLE_BS2 should only cause us not to run the IPL, but not
skip loading it in the first place. More importantly, without always
loading it, this causes issues when trying to launch only the GC IPL
while having bHLE_BS2 = false.
* Move out boot parameters to a separate struct, which is not part
of SConfig/ConfigManager because there is no reason for it to
be there.
* Move out file name parsing and constructing the appropriate params
from paths to a separate function that does that, and only that.
* For every different boot type we support, add a proper struct with
only the required parameters, with descriptive names and use
std::variant to only store what we need.
* Clean up the bHLE_BS2 stuff which made no sense sometimes. Now
instead of using bHLE_BS2 for two different things, both for storing
the user config setting and as a runtime boot parameter,
we simply replace the Disc boot params with BootParameters::IPL.
* Const correctness so it's clear what can or cannot update the config.
* Drop unused parameters and unneeded checks.
* Make a few checks a lot more concise. (Looking at you, extension
checks for disc images.)
* Remove a mildly terrible workaround where we needed to pass an empty
string in order to boot the GC IPL without any game inserted.
(Not required anymore thanks to std::variant and std::optional.)
The motivation for this are multiple: cleaning up and being able to add
support for booting an installed NAND title. Without this change, it'd
be pretty much impossible to implement that.
Also, using std::visit with std::variant makes the compiler do
additional type checks: now we're guaranteed that the boot code will
handle all boot types and no invalid boot type will be possible.
I didn't know better back then, but the boot type is only supposed to
be used for the actual boot params. It shouldn't be used or changed
after booting.
This makes the interface slightly cleaner and a bit more consistent
with the other getters. Still not fully the same, since the others
don't really handle failures with std::optional; but at least the
value is returned by value now, as opposed to having the function
take a pointer to a u64.
This gets rid of some assumptions that non-DiscIO code was making about
volume types. It's better to encapsulate as many of the volume type
differences as possible in DiscIO.
Made possible by PR #2353.
Fixes https://bugs.dolphin-emu.org/issues/10265 (Star Wars: The Clone
Wars hangs on loading screen with DSP-HLE and JIT Recompiler).
The Clone Wars hangs upon initial boot if this interrupt happens too
quickly after submitting a command list. When played in DSP-LLE, the
interrupt lags by about 160,000 cycles, though any value greater than or
equal to 814 will work. In other games, the lag can be as small as 50,000
cycles (in Metroid Prime) and as large as 718,092 cycles (in Tales of
Symphonia!).
All credit to @hthh, who put in a heroic(!) amount of detective work and
discovered that The Clone Wars tracks a "AXCommandListCycles" variable
which matches the aforementioned 160,000 cycles. It's initialized to ~2500
cycles for a minimal, empty command list, so that should be a safe number
for pretty much anything a game does (*crosses fingers*).
This file is pretty small now that it doesn't handle Wii
partitions anymore, so let's move its contents to Volume.cpp.
This is also more consistent with how blob creation works.
By removing mutable state in VolumeWiiCrypted, this change makes
partition-related code simpler. It also gets rid of other ugly things,
like ISOProperties's "over 9000" loop that creates a list of
partitions by trying possible combinations, and DiscScrubber's
volume swapping that recreates the entire volume when it needs to
change partition.