// Copyright (C) 2003 Dolphin Project.

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License 2.0 for more details.

// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/

// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/

#include "Common.h"
#include "VideoConfig.h"
#include "MathUtil.h"
#include "Profiler.h"

#include <cmath>

#include "Statistics.h"

#include "VertexShaderGen.h"
#include "VertexShaderManager.h"
#include "BPMemory.h"
#include "CPMemory.h"
#include "XFMemory.h"
#include "VideoCommon.h"
#include "VertexManagerBase.h"

static float GC_ALIGNED16(s_fMaterials[16]);
float GC_ALIGNED16(g_fProjectionMatrix[16]);

// track changes
static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged;
static int nMaterialsChanged;
static int nTransformMatricesChanged[2]; // min,max
static int nNormalMatricesChanged[2]; // min,max
static int nPostTransformMatricesChanged[2]; // min,max
static int nLightsChanged[2]; // min,max

static Matrix33 s_viewRotationMatrix;
static Matrix33 s_viewInvRotationMatrix;
static float s_fViewTranslationVector[3];
static float s_fViewRotation[2];

void UpdateViewport();

namespace
{
// Control Variables
static bool g_ProjHack0;
static ProjectionHack g_ProjHack1;
static ProjectionHack g_ProjHack2;
static ProjectionHack g_ProjHack3;
} // Namespace

void UpdateProjectionHack(int iPhackvalue)
{
	bool bProjHack1 = 0, bPhackvalue1 = 0, bPhackvalue2 = 0, bPhackvalue3 = 0;
	float fhackvalue1 = 0, fhackvalue2 = 0;
	switch(iPhackvalue)
	{
	case PROJECTION_HACK_NONE:
		bProjHack1 = 0;
		bPhackvalue1 = 0;
		bPhackvalue2 = 0;
		bPhackvalue3 = 0;
		break;
	case PROJECTION_HACK_ZELDA_TP_BLOOM_HACK:
		bPhackvalue1 = 1;
		bProjHack1 = 1;
		break;
	case PROJECTION_HACK_SONIC_AND_THE_BLACK_KNIGHT:
		bPhackvalue1 = 1;
		fhackvalue1 = 0.00002f;
		bPhackvalue2 = 1;
		fhackvalue2 = 1.999980f;
		break;
	case PROJECTION_HACK_BLEACH_VERSUS_CRUSADE:
		bPhackvalue2 = 1;
		fhackvalue2 = 0.5f;
		bPhackvalue1 = 0;
		bProjHack1 = 0;
		break;
	case PROJECTION_HACK_SKIES_OF_ARCADIA:
		bPhackvalue1 = 1;
		fhackvalue1 = 0.04f;
		bPhackvalue2 = 0;
		bProjHack1 = 0;
		break;
	case PROJECTION_HACK_METROID_OTHER_M:  //temp fix for black screens during cut scenes
		bPhackvalue3 = 1;
		break;
/*	// Unused - kept for reference
	case PROJECTION_HACK_FINAL_FANTASY_CC_ECHO_OF_TIME:
		bPhackvalue1 = 1;
		fhackvalue1 = 0.8f;
		bPhackvalue2 = 1;
		fhackvalue2 = 1.2f;
		bProjHack1 = 0;
		break;
	case PROJECTION_HACK_HARVESTMOON_MM:
		bPhackvalue1 = 1;
		fhackvalue1 = 0.0075f;
		bPhackvalue2 = 0;
		bProjHack1 = 0;
		break;
	case PROJECTION_HACK_BATEN_KAITOS:
		bPhackvalue1 = 1;
		fhackvalue1 = 0.0026f;
		bPhackvalue2 = 1;
		fhackvalue2 = 1.9974f;
		bProjHack1 = 1;
		break;
	case PROJECTION_HACK_BATEN_KAITOS_ORIGIN:
		bPhackvalue1 = 1;
		fhackvalue1 = 0.0012f;
		bPhackvalue2 = 1;
		fhackvalue2 = 1.9988f;
		bProjHack1 = 1;
		break;
*/
	}

	// Set the projections hacks
	g_ProjHack0 = bProjHack1;
	g_ProjHack1 = ProjectionHack(bPhackvalue1 == 0 ? false : true, fhackvalue1);
	g_ProjHack2 = ProjectionHack(bPhackvalue2 == 0 ? false : true, fhackvalue2);
	g_ProjHack3 = ProjectionHack(bPhackvalue3,0);
}

void VertexShaderManager::Init()
{
	Dirty();

	memset(&xfregs, 0, sizeof(xfregs));
	memset(xfmem, 0, sizeof(xfmem));
	ResetView();
}

void VertexShaderManager::Shutdown()
{
}

void VertexShaderManager::Dirty()
{
	nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256;
	nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96;
	nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256;
	nLightsChanged[0] = 0; nLightsChanged[1] = 0x80;
	bPosNormalMatrixChanged = true;
	bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
	bProjectionChanged = true;
	bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
	nMaterialsChanged = 15;
}

// Syncs the shader constant buffers with xfmem
// TODO: A cleaner way to control the matricies without making a mess in the parameters field
void VertexShaderManager::SetConstants()
{
	if (nTransformMatricesChanged[0] >= 0)
	{
		int startn = nTransformMatricesChanged[0] / 4;
		int endn = (nTransformMatricesChanged[1] + 3) / 4;
		const float* pstart = (const float*)&xfmem[startn * 4];
		SetMultiVSConstant4fv(C_TRANSFORMMATRICES + startn, endn - startn, pstart);
		nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
	}
	if (nNormalMatricesChanged[0] >= 0)
	{
		int startn = nNormalMatricesChanged[0] / 3;
		int endn = (nNormalMatricesChanged[1] + 2) / 3;
		const float *pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn];
		SetMultiVSConstant3fv(C_NORMALMATRICES + startn, endn - startn, pnstart);
		nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
	}

	if (nPostTransformMatricesChanged[0] >= 0)
	{
		int startn = nPostTransformMatricesChanged[0] / 4;
		int endn = (nPostTransformMatricesChanged[1] + 3 ) / 4;
		const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES + startn * 4];
		SetMultiVSConstant4fv(C_POSTTRANSFORMMATRICES + startn, endn - startn, pstart);
	}

	if (nLightsChanged[0] >= 0)
	{
		// lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
		int istart = nLightsChanged[0] / 0x10;
		int iend = (nLightsChanged[1] + 15) / 0x10;
		const float* xfmemptr = (const float*)&xfmem[0x10 * istart + XFMEM_LIGHTS];

		for (int i = istart; i < iend; ++i)
		{
			u32 color = *(const u32*)(xfmemptr + 3);
			float NormalizationCoef = 1 / 255.0f;
			SetVSConstant4f(C_LIGHTS + 5 * i,
				((color >> 24) & 0xFF) * NormalizationCoef,
				((color >> 16) & 0xFF) * NormalizationCoef,
				((color >> 8)  & 0xFF) * NormalizationCoef,
				((color)       & 0xFF) * NormalizationCoef);
			xfmemptr += 4;

			for (int j = 0; j < 4; ++j, xfmemptr += 3)
			{
				if (j == 1 &&
					fabs(xfmemptr[0]) < 0.00001f &&
					fabs(xfmemptr[1]) < 0.00001f &&
					fabs(xfmemptr[2]) < 0.00001f)
				{
					// dist attenuation, make sure not equal to 0!!!
					SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0);
				}
				else
					SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr);
			}
		}

		nLightsChanged[0] = nLightsChanged[1] = -1;
	}

	if (nMaterialsChanged)
	{
		for (int i = 0; i < 4; ++i)
			if (nMaterialsChanged & (1 << i))
				SetVSConstant4fv(C_MATERIALS + i, &s_fMaterials[4 * i]);

		nMaterialsChanged = 0;
	}

	if (bPosNormalMatrixChanged)
	{
		bPosNormalMatrixChanged = false;

		const float *pos = (const float *)xfmem + MatrixIndexA.PosNormalMtxIdx * 4;
		const float *norm = (const float *)xfmem + XFMEM_NORMALMATRICES + 3 * (MatrixIndexA.PosNormalMtxIdx & 31);

		SetMultiVSConstant4fv(C_POSNORMALMATRIX, 3, pos);
		SetMultiVSConstant3fv(C_POSNORMALMATRIX + 3, 3, norm);
	}

	if (bTexMatricesChanged[0])
	{
		bTexMatricesChanged[0] = false;
		const float *fptrs[] = 
		{
			(const float *)xfmem + MatrixIndexA.Tex0MtxIdx * 4, (const float *)xfmem + MatrixIndexA.Tex1MtxIdx * 4,
			(const float *)xfmem + MatrixIndexA.Tex2MtxIdx * 4, (const float *)xfmem + MatrixIndexA.Tex3MtxIdx * 4
		};

		for (int i = 0; i < 4; ++i)
		{
			SetMultiVSConstant4fv(C_TEXMATRICES + 3 * i, 3, fptrs[i]);
		}
	}

	if (bTexMatricesChanged[1])
	{
		bTexMatricesChanged[1] = false;
		const float *fptrs[] = {
			(const float *)xfmem + MatrixIndexB.Tex4MtxIdx * 4, (const float *)xfmem + MatrixIndexB.Tex5MtxIdx * 4,
			(const float *)xfmem + MatrixIndexB.Tex6MtxIdx * 4, (const float *)xfmem + MatrixIndexB.Tex7MtxIdx * 4
		};

		for (int i = 0; i < 4; ++i)
		{
			SetMultiVSConstant4fv(C_TEXMATRICES+3 * i + 12, 3, fptrs[i]);
		}
	}

	if (bViewportChanged)
	{
		bViewportChanged = false;
		SetVSConstant4f(C_DEPTHPARAMS,xfregs.rawViewport[5]/ 16777216.0f,xfregs.rawViewport[2]/ 16777216.0f,0.0f,0.0f);
		// This is so implementation-dependent that we can't have it here.
		UpdateViewport();
	}

	if (bProjectionChanged)
	{
		bProjectionChanged = false;

		if (xfregs.rawProjection[6] == 0)
		{
			// Perspective
			
			g_fProjectionMatrix[0] = xfregs.rawProjection[0] * g_ActiveConfig.fAspectRatioHackW;
			g_fProjectionMatrix[1] = 0.0f;
			g_fProjectionMatrix[2] = xfregs.rawProjection[1];
			g_fProjectionMatrix[3] = 0.0f;

			g_fProjectionMatrix[4] = 0.0f;
			g_fProjectionMatrix[5] = xfregs.rawProjection[2] * g_ActiveConfig.fAspectRatioHackH;
			g_fProjectionMatrix[6] = xfregs.rawProjection[3];
			g_fProjectionMatrix[7] = 0.0f;

			g_fProjectionMatrix[8] = 0.0f;
			g_fProjectionMatrix[9] = 0.0f;
			g_fProjectionMatrix[10] = xfregs.rawProjection[4];

			g_fProjectionMatrix[11] = xfregs.rawProjection[5];
 			
			g_fProjectionMatrix[12] = 0.0f;
			g_fProjectionMatrix[13] = 0.0f;
			// donkopunchstania: GC GPU rounds differently?
			// -(1 + epsilon) so objects are clipped as they are on the real HW
			g_fProjectionMatrix[14] = -1.00000011921f;
			g_fProjectionMatrix[15] = 0.0f;

			SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]);
			SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]);
			SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]);
			SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]);
			SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]);
			SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]);
			SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]);
			SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]);
			SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]);
			SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]);
			SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]);
			SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]);
			SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]);
			SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]);
			SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]);
			SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]);
		}
		else
		{ 
			// Orthographic Projection
			g_fProjectionMatrix[0] = xfregs.rawProjection[0];
			g_fProjectionMatrix[1] = 0.0f;
			g_fProjectionMatrix[2] = 0.0f;
			g_fProjectionMatrix[3] = xfregs.rawProjection[1];

			g_fProjectionMatrix[4] = 0.0f;
			g_fProjectionMatrix[5] = xfregs.rawProjection[2];
			g_fProjectionMatrix[6] = 0.0f;
			g_fProjectionMatrix[7] = xfregs.rawProjection[3];

			g_fProjectionMatrix[8] = 0.0f;
			g_fProjectionMatrix[9] = 0.0f;
			g_fProjectionMatrix[10] = (g_ProjHack1.enabled ? -(g_ProjHack1.value + xfregs.rawProjection[4]) : xfregs.rawProjection[4]);
			g_fProjectionMatrix[11] = (g_ProjHack2.enabled ? -(g_ProjHack2.value + xfregs.rawProjection[5]) : xfregs.rawProjection[5]) + (g_ProjHack0 ? 0.1f : 0.0f);

			g_fProjectionMatrix[12] = 0.0f;
			g_fProjectionMatrix[13] = 0.0f;

			/*
			projection hack for metroid other m...attempt to remove black projection layer from cut scenes.
			g_fProjectionMatrix[15] = 1.0f was the default setting before
			this hack was added...setting g_fProjectionMatrix[14] to -1 might make the hack more stable, needs more testing.
			Only works for OGL and DX9...this is not helping DX11
			*/
			
			g_fProjectionMatrix[14] = 0.0f;
			g_fProjectionMatrix[15] = (g_ProjHack3.enabled && xfregs.rawProjection[0] == 2.0f ? 0.0f : 1.0f);  //causes either the efb copy or bloom layer not to show if proj hack enabled
		
			SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]);
			SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]);
			SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]);
			SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]);
			SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]);
			SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]);
			SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]);
			SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]);
			SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]);
			SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]);
			SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]);
			SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]);
			SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]);
			SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]);
			SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]);
			SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]);
			SETSTAT_FT(stats.proj_0, xfregs.rawProjection[0]);
			SETSTAT_FT(stats.proj_1, xfregs.rawProjection[1]);
			SETSTAT_FT(stats.proj_2, xfregs.rawProjection[2]);
			SETSTAT_FT(stats.proj_3, xfregs.rawProjection[3]);
			SETSTAT_FT(stats.proj_4, xfregs.rawProjection[4]);
			SETSTAT_FT(stats.proj_5, xfregs.rawProjection[5]);
			SETSTAT_FT(stats.proj_6, xfregs.rawProjection[6]);
		}

		PRIM_LOG("Projection: %f %f %f %f %f %f\n", xfregs.rawProjection[0], xfregs.rawProjection[1], xfregs.rawProjection[2], xfregs.rawProjection[3], xfregs.rawProjection[4], xfregs.rawProjection[5]);

		if ((g_ActiveConfig.bFreeLook || g_ActiveConfig.bAnaglyphStereo ) && xfregs.rawProjection[6] == 0)
		{
			Matrix44 mtxA;
			Matrix44 mtxB;
			Matrix44 viewMtx;

			Matrix44::Translate(mtxA, s_fViewTranslationVector);
			Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix);
			Matrix44::Multiply(mtxB, mtxA, viewMtx); // view = rotation x translation
			Matrix44::Set(mtxB, g_fProjectionMatrix);
			Matrix44::Multiply(mtxB, viewMtx, mtxA); // mtxA = projection x view

			SetMultiVSConstant4fv(C_PROJECTION, 4, &mtxA.data[0]);
		}
		else
		{
			SetMultiVSConstant4fv(C_PROJECTION, 4, &g_fProjectionMatrix[0]);
		}
	}
}

void VertexShaderManager::InvalidateXFRange(int start, int end)
{
	if (((u32)start >= (u32)MatrixIndexA.PosNormalMtxIdx * 4 &&
		 (u32)start <  (u32)MatrixIndexA.PosNormalMtxIdx * 4 + 12) ||
		((u32)start >= XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31) * 3 &&
		 (u32)start <  XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31) * 3 + 9)) {
		bPosNormalMatrixChanged = true;
	}

	if (((u32)start >= (u32)MatrixIndexA.Tex0MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex0MtxIdx*4+12) ||
		((u32)start >= (u32)MatrixIndexA.Tex1MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex1MtxIdx*4+12) ||
		((u32)start >= (u32)MatrixIndexA.Tex2MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex2MtxIdx*4+12) ||
		((u32)start >= (u32)MatrixIndexA.Tex3MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex3MtxIdx*4+12)) {
		bTexMatricesChanged[0] = true;
	}

	if (((u32)start >= (u32)MatrixIndexB.Tex4MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex4MtxIdx*4+12) ||
		((u32)start >= (u32)MatrixIndexB.Tex5MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex5MtxIdx*4+12) ||
		((u32)start >= (u32)MatrixIndexB.Tex6MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex6MtxIdx*4+12) ||
		((u32)start >= (u32)MatrixIndexB.Tex7MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex7MtxIdx*4+12)) {
		bTexMatricesChanged[1] = true;
	}

	if (start < XFMEM_POSMATRICES_END)
	{
		if (nTransformMatricesChanged[0] == -1)
		{
			nTransformMatricesChanged[0] = start;
			nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
		}
		else
		{
			if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start;
			if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
		}
	}

	if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES)
	{
		int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES;
		int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES;

		if (nNormalMatricesChanged[0] == -1)
		{
			nNormalMatricesChanged[0] = _start;
			nNormalMatricesChanged[1] = _end;
		}
		else
		{
			if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start;
			if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end;
		}
	}

	if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES)
	{
		int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES;
		int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES;

		if (nPostTransformMatricesChanged[0] == -1)
		{
			nPostTransformMatricesChanged[0] = _start;
			nPostTransformMatricesChanged[1] = _end;
		}
		else
		{
			if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start;
			if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end;
		}
	}

	if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS)
	{
		int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS;
		int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS;

		if (nLightsChanged[0] == -1 )
		{
			nLightsChanged[0] = _start;
			nLightsChanged[1] = _end;
		}
		else
		{
			if (nLightsChanged[0] > _start) nLightsChanged[0] = _start;
			if (nLightsChanged[1] < _end)   nLightsChanged[1] = _end;
		}
	}
}

void VertexShaderManager::SetTexMatrixChangedA(u32 Value)
{
	if (MatrixIndexA.Hex != Value)
	{
		VertexManager::Flush();
		if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f))
			bPosNormalMatrixChanged = true;
		bTexMatricesChanged[0] = true;
		MatrixIndexA.Hex = Value;
	}
}

void VertexShaderManager::SetTexMatrixChangedB(u32 Value)
{
	if (MatrixIndexB.Hex != Value)
	{
		VertexManager::Flush();
		bTexMatricesChanged[1] = true;
		MatrixIndexB.Hex = Value;
	}
}

void VertexShaderManager::SetViewport(float* _Viewport, int constantIndex)
{
	if(constantIndex <= 0)
	{
		memcpy(xfregs.rawViewport, _Viewport, sizeof(xfregs.rawViewport));
	}
	else
	{
		xfregs.rawViewport[constantIndex] = _Viewport[0];
	}
	bViewportChanged = true;
}

void VertexShaderManager::SetViewportChanged()
{
	bViewportChanged = true;
}

void VertexShaderManager::SetProjection(float* _pProjection, int constantIndex)
{
	if(constantIndex <= 0)
	{
		memcpy(xfregs.rawProjection, _pProjection, sizeof(xfregs.rawProjection));
	}
	else
	{
		xfregs.rawProjection[constantIndex] = _pProjection[0];
	}
	bProjectionChanged = true;
}

void VertexShaderManager::SetMaterialColor(int index, u32 data)
{
	int ind = index * 4;

	nMaterialsChanged  |= (1 << index);
	float NormalizationCoef = 1 / 255.0f;
	s_fMaterials[ind++] = ((data >> 24) & 0xFF) * NormalizationCoef;
	s_fMaterials[ind++] = ((data >> 16) & 0xFF) * NormalizationCoef;
	s_fMaterials[ind++] = ((data >>  8) & 0xFF) * NormalizationCoef;
	s_fMaterials[ind]   = ( data        & 0xFF) * NormalizationCoef;
}

void VertexShaderManager::TranslateView(float x, float y)
{
	float result[3];
	float vector[3] = { x,0,y };

	Matrix33::Multiply(s_viewInvRotationMatrix, vector, result);

	for (int i = 0; i < 3; i++)
		s_fViewTranslationVector[i] += result[i];

	bProjectionChanged = true;
}

void VertexShaderManager::RotateView(float x, float y)
{
	s_fViewRotation[0] += x;
	s_fViewRotation[1] += y;

	Matrix33 mx;
	Matrix33 my;
	Matrix33::RotateX(mx, s_fViewRotation[1]);
	Matrix33::RotateY(my, s_fViewRotation[0]);
	Matrix33::Multiply(mx, my, s_viewRotationMatrix);

	// reverse rotation
	Matrix33::RotateX(mx, -s_fViewRotation[1]);
	Matrix33::RotateY(my, -s_fViewRotation[0]);
	Matrix33::Multiply(my, mx, s_viewInvRotationMatrix);

	bProjectionChanged = true;
}

void VertexShaderManager::ResetView()
{
	memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector));
	Matrix33::LoadIdentity(s_viewRotationMatrix);
	Matrix33::LoadIdentity(s_viewInvRotationMatrix);
	s_fViewRotation[0] = s_fViewRotation[1] = 0.0f;

	bProjectionChanged = true;
}