// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <algorithm>
#include <cmath>
#include <cstring>

#include "Common/CPUDetect.h"
#include "Common/CommonFuncs.h"
#include "Common/CommonTypes.h"
#include "Common/Intrinsics.h"

#include "VideoCommon/LookUpTables.h"
#include "VideoCommon/TextureDecoder.h"

// GameCube/Wii texture decoder

// Decodes all known GameCube/Wii texture formats.
// by ector

static inline u32 DecodePixel_IA8(u16 val)
{
  int a = val & 0xFF;
  int i = val >> 8;
  return i | (i << 8) | (i << 16) | (a << 24);
}

static inline u32 DecodePixel_RGB565(u16 val)
{
  int r, g, b, a;
  r = Convert5To8((val >> 11) & 0x1f);
  g = Convert6To8((val >> 5) & 0x3f);
  b = Convert5To8((val)&0x1f);
  a = 0xFF;
  return r | (g << 8) | (b << 16) | (a << 24);
}

static inline u32 DecodePixel_RGB5A3(u16 val)
{
  int r, g, b, a;
  if ((val & 0x8000))
  {
    r = Convert5To8((val >> 10) & 0x1f);
    g = Convert5To8((val >> 5) & 0x1f);
    b = Convert5To8((val)&0x1f);
    a = 0xFF;
  }
  else
  {
    a = Convert3To8((val >> 12) & 0x7);
    r = Convert4To8((val >> 8) & 0xf);
    g = Convert4To8((val >> 4) & 0xf);
    b = Convert4To8((val)&0xf);
  }
  return r | (g << 8) | (b << 16) | (a << 24);
}

struct DXTBlock
{
  u16 color1;
  u16 color2;
  u8 lines[4];
};

static inline void DecodeBytes_C4_IA8(u32* dst, const u8* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 4; x++)
  {
    u8 val = src[x];
    *dst++ = DecodePixel_IA8(tlut[val >> 4]);
    *dst++ = DecodePixel_IA8(tlut[val & 0xF]);
  }
}

static inline void DecodeBytes_C4_RGB565(u32* dst, const u8* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 4; x++)
  {
    u8 val = src[x];
    *dst++ = DecodePixel_RGB565(Common::swap16(tlut[val >> 4]));
    *dst++ = DecodePixel_RGB565(Common::swap16(tlut[val & 0xF]));
  }
}

static inline void DecodeBytes_C4_RGB5A3(u32* dst, const u8* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 4; x++)
  {
    u8 val = src[x];
    *dst++ = DecodePixel_RGB5A3(Common::swap16(tlut[val >> 4]));
    *dst++ = DecodePixel_RGB5A3(Common::swap16(tlut[val & 0xF]));
  }
}

static inline void DecodeBytes_C8_IA8(u32* dst, const u8* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 8; x++)
  {
    *dst++ = DecodePixel_IA8(tlut[src[x]]);
  }
}

static inline void DecodeBytes_C8_RGB565(u32* dst, const u8* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 8; x++)
  {
    u8 val = src[x];
    *dst++ = DecodePixel_RGB565(Common::swap16(tlut[val]));
  }
}

static inline void DecodeBytes_C8_RGB5A3(u32* dst, const u8* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 8; x++)
  {
    u8 val = src[x];
    *dst++ = DecodePixel_RGB5A3(Common::swap16(tlut[val]));
  }
}

static inline void DecodeBytes_C14X2_IA8(u32* dst, const u16* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 4; x++)
  {
    u16 val = Common::swap16(src[x]);
    *dst++ = DecodePixel_IA8(tlut[(val & 0x3FFF)]);
  }
}

static inline void DecodeBytes_C14X2_RGB565(u32* dst, const u16* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 4; x++)
  {
    u16 val = Common::swap16(src[x]);
    *dst++ = DecodePixel_RGB565(Common::swap16(tlut[(val & 0x3FFF)]));
  }
}

static inline void DecodeBytes_C14X2_RGB5A3(u32* dst, const u16* src, const u8* tlut_)
{
  const u16* tlut = (u16*)tlut_;
  for (int x = 0; x < 4; x++)
  {
    u16 val = Common::swap16(src[x]);
    *dst++ = DecodePixel_RGB5A3(Common::swap16(tlut[(val & 0x3FFF)]));
  }
}

static inline void DecodeBytes_IA4(u32* dst, const u8* src)
{
  for (int x = 0; x < 8; x++)
  {
    const u8 val = src[x];
    u8 a = Convert4To8(val >> 4);
    u8 l = Convert4To8(val & 0xF);
    dst[x] = (a << 24) | l << 16 | l << 8 | l;
  }
}

#ifdef CHECK
static inline u32 makeRGBA(int r, int g, int b, int a)
{
  return (a << 24) | (b << 16) | (g << 8) | r;
}

static void DecodeDXTBlock(u32* dst, const DXTBlock* src, int pitch)
{
  // S3TC Decoder (Note: GCN decodes differently from PC so we can't use native support)
  // Needs more speed.
  u16 c1 = Common::swap16(src->color1);
  u16 c2 = Common::swap16(src->color2);
  int blue1 = Convert5To8(c1 & 0x1F);
  int blue2 = Convert5To8(c2 & 0x1F);
  int green1 = Convert6To8((c1 >> 5) & 0x3F);
  int green2 = Convert6To8((c2 >> 5) & 0x3F);
  int red1 = Convert5To8((c1 >> 11) & 0x1F);
  int red2 = Convert5To8((c2 >> 11) & 0x1F);
  int colors[4];
  colors[0] = MakeRGBA(red1, green1, blue1, 255);
  colors[1] = MakeRGBA(red2, green2, blue2, 255);
  if (c1 > c2)
  {
    int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3);
    int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3);
    int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3);
    colors[2] = MakeRGBA(red1 + red3, green1 + green3, blue1 + blue3, 255);
    colors[3] = MakeRGBA(red2 - red3, green2 - green3, blue2 - blue3, 255);
  }
  else
  {
    colors[2] = MakeRGBA((red1 + red2 + 1) / 2,  // Average
                         (green1 + green2 + 1) / 2, (blue1 + blue2 + 1) / 2, 255);
    colors[3] = MakeRGBA(red2, green2, blue2, 0);  // Color2 but transparent
  }

  for (int y = 0; y < 4; y++)
  {
    int val = src->lines[y];
    for (int x = 0; x < 4; x++)
    {
      dst[x] = colors[(val >> 6) & 3];
      val <<= 2;
    }
    dst += pitch;
  }
}
#endif

// JSD 01/06/11:
// TODO: we really should ensure BOTH the source and destination addresses are aligned to 16-byte
// boundaries to
// squeeze out a little more performance. _mm_loadu_si128/_mm_storeu_si128 is slower than
// _mm_load_si128/_mm_store_si128
// because they work on unaligned addresses. The processor is free to make the assumption that
// addresses are multiples
// of 16 in the aligned case.
// TODO: complete SSE2 optimization of less often used texture formats.
// TODO: refactor algorithms using _mm_loadl_epi64 unaligned loads to prefer 128-bit aligned loads.

void _TexDecoder_DecodeImpl(u32* dst, const u8* src, int width, int height, int texformat,
                            const u8* tlut, TlutFormat tlutfmt)
{
  const int Wsteps4 = (width + 3) / 4;
  const int Wsteps8 = (width + 7) / 8;

  switch (texformat)
  {
  case GX_TF_C4:
    if (tlutfmt == GX_TL_RGB5A3)
    {
      for (int y = 0; y < height; y += 8)
        for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++)
            DecodeBytes_C4_RGB5A3(dst + (y + iy) * width + x, src + 4 * xStep, tlut);
    }
    else if (tlutfmt == GX_TL_IA8)
    {
      for (int y = 0; y < height; y += 8)
        for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++)
            DecodeBytes_C4_IA8(dst + (y + iy) * width + x, src + 4 * xStep, tlut);
    }
    else if (tlutfmt == GX_TL_RGB565)
    {
      for (int y = 0; y < height; y += 8)
        for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++)
            DecodeBytes_C4_RGB565(dst + (y + iy) * width + x, src + 4 * xStep, tlut);
    }
    break;
  case GX_TF_I4:
  {
    const __m128i kMask_x0f = _mm_set1_epi32(0x0f0f0f0fL);
    const __m128i kMask_xf0 = _mm_set1_epi32(0xf0f0f0f0L);
#if _M_SSE >= 0x301
    // xsacha optimized with SSSE3 intrinsics
    // Produces a ~40% speed improvement over SSE2 implementation
    if (cpu_info.bSSSE3)
    {
      const __m128i mask9180 = _mm_set_epi8(9, 9, 9, 9, 1, 1, 1, 1, 8, 8, 8, 8, 0, 0, 0, 0);
      const __m128i maskB3A2 = _mm_set_epi8(11, 11, 11, 11, 3, 3, 3, 3, 10, 10, 10, 10, 2, 2, 2, 2);
      const __m128i maskD5C4 = _mm_set_epi8(13, 13, 13, 13, 5, 5, 5, 5, 12, 12, 12, 12, 4, 4, 4, 4);
      const __m128i maskF7E6 = _mm_set_epi8(15, 15, 15, 15, 7, 7, 7, 7, 14, 14, 14, 14, 6, 6, 6, 6);
      for (int y = 0; y < height; y += 8)
        for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2, xStep++)
          {
            const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep));
            // We want the hi 4 bits of each 8-bit word replicated to 32-bit words:
            // (00000000 00000000 HhGgFfEe DdCcBbAa) -> (00000000 00000000 HHGGFFEE DDCCBBAA)
            const __m128i i1 = _mm_and_si128(r0, kMask_xf0);
            const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4));

            // Now we do same as above for the second half of the byte
            const __m128i i2 = _mm_and_si128(r0, kMask_x0f);
            const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2, 4));

            // Combine both sides
            const __m128i base = _mm_unpacklo_epi64(i11, i22);
            // Achieve the pattern visible in the masks.
            const __m128i o1 = _mm_shuffle_epi8(base, mask9180);
            const __m128i o2 = _mm_shuffle_epi8(base, maskB3A2);
            const __m128i o3 = _mm_shuffle_epi8(base, maskD5C4);
            const __m128i o4 = _mm_shuffle_epi8(base, maskF7E6);

            // Write row 0:
            _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), o1);
            _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x + 4), o2);
            // Write row 1:
            _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x), o3);
            _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x + 4), o4);
          }
    }
    else
#endif
    // JSD optimized with SSE2 intrinsics.
    // Produces a ~76% speed improvement over reference C implementation.
    {
      for (int y = 0; y < height; y += 8)
        for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2, xStep++)
          {
            const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep));
            // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee
            // ddcc bbaa)
            const __m128i r1 = _mm_unpacklo_epi8(r0, r0);

            // We want the hi 4 bits of each 8-bit word replicated to 32-bit words:
            // (HhHhGgGg FfFfEeEe DdDdCcCc BbBbAaAa) & kMask_xf0 -> (H0H0G0G0 F0F0E0E0 D0D0C0C0
            // B0B0A0A0)
            const __m128i i1 = _mm_and_si128(r1, kMask_xf0);
            // -> (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA)
            const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4));

            // Shuffle low 64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA)
            // to (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA)
            const __m128i i15 = _mm_unpacklo_epi8(i11, i11);
            // (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA)
            const __m128i i151 = _mm_unpacklo_epi8(i15, i15);
            // (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (DDDDDDDD DDDDDDDD CCCCCCCC CCCCCCCC)
            const __m128i i152 = _mm_unpackhi_epi8(i15, i15);

            // Shuffle hi  64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA)
            // to (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE)
            const __m128i i16 = _mm_unpackhi_epi8(i11, i11);
            // (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (FFFFFFFF FFFFFFFF EEEEEEEE EEEEEEEE)
            const __m128i i161 = _mm_unpacklo_epi8(i16, i16);
            // (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (HHHHHHHH HHHHHHHH GGGGGGGG GGGGGGGG)
            const __m128i i162 = _mm_unpackhi_epi8(i16, i16);

            // Now find the lo 4 bits of each input 8-bit word:
            const __m128i i2 = _mm_and_si128(r1, kMask_x0f);
            const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2, 4));

            const __m128i i25 = _mm_unpacklo_epi8(i22, i22);
            const __m128i i251 = _mm_unpacklo_epi8(i25, i25);
            const __m128i i252 = _mm_unpackhi_epi8(i25, i25);

            const __m128i i26 = _mm_unpackhi_epi8(i22, i22);
            const __m128i i261 = _mm_unpacklo_epi8(i26, i26);
            const __m128i i262 = _mm_unpackhi_epi8(i26, i26);

            // _mm_and_si128(i151, kMask_x00000000ffffffff) takes i151 and masks off 1st and 3rd
            // 32-bit words
            // (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA) -> (00000000 BBBBBBBB 00000000 AAAAAAAA)
            // _mm_and_si128(i251, kMask_xffffffff00000000) takes i251 and masks off 2nd and 4th
            // 32-bit words
            // (bbbbbbbb bbbbbbbb aaaaaaaa aaaaaaaa) -> (bbbbbbbb 00000000 aaaaaaaa 00000000)
            // And last but not least, _mm_or_si128 ORs those two together, giving us the
            // interleaving we desire:
            // (00000000 BBBBBBBB 00000000 AAAAAAAA) | (bbbbbbbb 00000000 aaaaaaaa 00000000) ->
            // (bbbbbbbb BBBBBBBB aaaaaaaa AAAAAAAA)
            const __m128i kMask_x00000000ffffffff =
                _mm_set_epi32(0x00000000L, 0xffffffffL, 0x00000000L, 0xffffffffL);
            const __m128i kMask_xffffffff00000000 =
                _mm_set_epi32(0xffffffffL, 0x00000000L, 0xffffffffL, 0x00000000L);
            const __m128i o1 = _mm_or_si128(_mm_and_si128(i151, kMask_x00000000ffffffff),
                                            _mm_and_si128(i251, kMask_xffffffff00000000));
            const __m128i o2 = _mm_or_si128(_mm_and_si128(i152, kMask_x00000000ffffffff),
                                            _mm_and_si128(i252, kMask_xffffffff00000000));

            // These two are for the next row; same pattern as above. We batched up two rows because
            // our input was 64 bits.
            const __m128i o3 = _mm_or_si128(_mm_and_si128(i161, kMask_x00000000ffffffff),
                                            _mm_and_si128(i261, kMask_xffffffff00000000));
            const __m128i o4 = _mm_or_si128(_mm_and_si128(i162, kMask_x00000000ffffffff),
                                            _mm_and_si128(i262, kMask_xffffffff00000000));
            // Write row 0:
            _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), o1);
            _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x + 4), o2);
            // Write row 1:
            _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x), o3);
            _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x + 4), o4);
          }
    }
  }
  break;
  case GX_TF_I8:  // speed critical
  {
#if _M_SSE >= 0x301
    // xsacha optimized with SSSE3 intrinsics
    // Produces a ~10% speed improvement over SSE2 implementation
    if (cpu_info.bSSSE3)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; ++iy, xStep++)
          {
            const __m128i mask3210 = _mm_set_epi8(3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0);

            const __m128i mask7654 = _mm_set_epi8(7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4);
            __m128i *quaddst, r, rgba0, rgba1;
            // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe
            // dcba)
            r = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep));
            // Shuffle select bytes to expand from (0000 0000 hgfe dcba) to:
            rgba0 = _mm_shuffle_epi8(r, mask3210);  // (dddd cccc bbbb aaaa)
            rgba1 = _mm_shuffle_epi8(r, mask7654);  // (hhhh gggg ffff eeee)

            quaddst = (__m128i*)(dst + (y + iy) * width + x);
            _mm_storeu_si128(quaddst, rgba0);
            _mm_storeu_si128(quaddst + 1, rgba1);
          }
    }
    else
#endif
    // JSD optimized with SSE2 intrinsics.
    // Produces an ~86% speed improvement over reference C implementation.
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
        {
          // Each loop iteration processes 4 rows from 4 64-bit reads.
          const u8* src2 = src + 32 * yStep;
          // TODO: is it more efficient to group the loads together sequentially and also the stores
          // at the end?
          // _mm_stream instead of _mm_store on my AMD Phenom II x410 made performance significantly
          // WORSE, so I
          // went with _mm_stores. Perhaps there is some edge case here creating the terrible
          // performance or we're
          // not aligned to 16-byte boundaries. I don't know.
          __m128i* quaddst;

          // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe
          // dcba)
          const __m128i r0 = _mm_loadl_epi64((const __m128i*)src2);
          // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc
          // bbaa)
          const __m128i r1 = _mm_unpacklo_epi8(r0, r0);

          // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb
          // aaaa)
          const __m128i rgba0 = _mm_unpacklo_epi8(r1, r1);
          // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff
          // eeee)
          const __m128i rgba1 = _mm_unpackhi_epi8(r1, r1);

          // Store (dddd cccc bbbb aaaa) out:
          quaddst = (__m128i*)(dst + (y + 0) * width + x);
          _mm_storeu_si128(quaddst, rgba0);
          // Store (hhhh gggg ffff eeee) out:
          _mm_storeu_si128(quaddst + 1, rgba1);

          // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe
          // dcba)
          src2 += 8;
          const __m128i r2 = _mm_loadl_epi64((const __m128i*)src2);
          // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc
          // bbaa)
          const __m128i r3 = _mm_unpacklo_epi8(r2, r2);

          // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb
          // aaaa)
          const __m128i rgba2 = _mm_unpacklo_epi8(r3, r3);
          // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff
          // eeee)
          const __m128i rgba3 = _mm_unpackhi_epi8(r3, r3);

          // Store (dddd cccc bbbb aaaa) out:
          quaddst = (__m128i*)(dst + (y + 1) * width + x);
          _mm_storeu_si128(quaddst, rgba2);
          // Store (hhhh gggg ffff eeee) out:
          _mm_storeu_si128(quaddst + 1, rgba3);

          // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe
          // dcba)
          src2 += 8;
          const __m128i r4 = _mm_loadl_epi64((const __m128i*)src2);
          // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc
          // bbaa)
          const __m128i r5 = _mm_unpacklo_epi8(r4, r4);

          // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb
          // aaaa)
          const __m128i rgba4 = _mm_unpacklo_epi8(r5, r5);
          // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff
          // eeee)
          const __m128i rgba5 = _mm_unpackhi_epi8(r5, r5);

          // Store (dddd cccc bbbb aaaa) out:
          quaddst = (__m128i*)(dst + (y + 2) * width + x);
          _mm_storeu_si128(quaddst, rgba4);
          // Store (hhhh gggg ffff eeee) out:
          _mm_storeu_si128(quaddst + 1, rgba5);

          // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe
          // dcba)
          src2 += 8;
          const __m128i r6 = _mm_loadl_epi64((const __m128i*)src2);
          // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc
          // bbaa)
          const __m128i r7 = _mm_unpacklo_epi8(r6, r6);

          // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb
          // aaaa)
          const __m128i rgba6 = _mm_unpacklo_epi8(r7, r7);
          // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff
          // eeee)
          const __m128i rgba7 = _mm_unpackhi_epi8(r7, r7);

          // Store (dddd cccc bbbb aaaa) out:
          quaddst = (__m128i*)(dst + (y + 3) * width + x);
          _mm_storeu_si128(quaddst, rgba6);
          // Store (hhhh gggg ffff eeee) out:
          _mm_storeu_si128(quaddst + 1, rgba7);
        }
    }
  }
  break;
  case GX_TF_C8:
    if (tlutfmt == GX_TL_RGB5A3)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
            DecodeBytes_C8_RGB5A3((u32*)dst + (y + iy) * width + x, src + 8 * xStep, tlut);
    }
    else if (tlutfmt == GX_TL_IA8)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
            DecodeBytes_C8_IA8(dst + (y + iy) * width + x, src + 8 * xStep, tlut);
    }
    else if (tlutfmt == GX_TL_RGB565)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
            DecodeBytes_C8_RGB565(dst + (y + iy) * width + x, src + 8 * xStep, tlut);
    }
    break;
  case GX_TF_IA4:
  {
    for (int y = 0; y < height; y += 4)
      for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++)
        for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
          DecodeBytes_IA4(dst + (y + iy) * width + x, src + 8 * xStep);
  }
  break;
  case GX_TF_IA8:
  {
#if _M_SSE >= 0x301
    // xsacha optimized with SSSE3 intrinsics.
    // Produces an ~50% speed improvement over SSE2 implementation.
    if (cpu_info.bSSSE3)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
          {
            const __m128i mask = _mm_set_epi8(6, 7, 7, 7, 4, 5, 5, 5, 2, 3, 3, 3, 0, 1, 1, 1);
            // Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed:
            // (0000 0000 hgfe dcba)
            const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep));
            // Shuffle to (ghhh efff cddd abbb)
            const __m128i r1 = _mm_shuffle_epi8(r0, mask);
            _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), r1);
          }
    }
    else
#endif
    // JSD optimized with SSE2 intrinsics.
    // Produces an ~80% speed improvement over reference C implementation.
    {
      const __m128i kMask_xf0 = _mm_set_epi32(0x00000000L, 0x00000000L, 0xff00ff00L, 0xff00ff00L);
      const __m128i kMask_x0f = _mm_set_epi32(0x00000000L, 0x00000000L, 0x00ff00ffL, 0x00ff00ffL);
      const __m128i kMask_xf000 = _mm_set_epi32(0xff000000L, 0xff000000L, 0xff000000L, 0xff000000L);
      const __m128i kMask_x0fff = _mm_set_epi32(0x00ffffffL, 0x00ffffffL, 0x00ffffffL, 0x00ffffffL);
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
          {
            // Expands a 16-bit "IA" to a 32-bit "AIII". Each char is an 8-bit value.

            // Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed:
            // (0000 0000 hgfe dcba)
            const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep));

            // Logical shift all 16-bit words right by 8 bits (0000 0000 hgfe dcba) to (0000 0000
            // 0h0f 0d0b)
            // This gets us only the I components.
            const __m128i i0 = _mm_srli_epi16(r0, 8);

            // Now join up the I components from their original positions but mask out the A
            // components.
            // (0000 0000 hgfe dcba) &      kMask_xFF00      -> (0000 0000 h0f0 d0b0)
            // (0000 0000 h0f0 d0b0) | (0000 0000 0h0f 0d0b) -> (0000 0000 hhff ddbb)
            const __m128i i1 = _mm_or_si128(_mm_and_si128(r0, kMask_xf0), i0);

            // Shuffle low 64-bits with itself to expand from (0000 0000 hhff ddbb) to (hhhh ffff
            // dddd bbbb)
            const __m128i i2 = _mm_unpacklo_epi8(i1, i1);
            // (hhhh ffff dddd bbbb) & kMask_x0fff -> (0hhh 0fff 0ddd 0bbb)
            const __m128i i3 = _mm_and_si128(i2, kMask_x0fff);

            // Now that we have the I components in 32-bit word form, time work out the A components
            // into
            // their final positions.

            // (0000 0000 hgfe dcba) &      kMask_x00FF      -> (0000 0000 0g0e 0c0a)
            const __m128i a0 = _mm_and_si128(r0, kMask_x0f);
            // (0000 0000 0g0e 0c0a) -> (00gg 00ee 00cc 00aa)
            const __m128i a1 = _mm_unpacklo_epi8(a0, a0);
            // (00gg 00ee 00cc 00aa) << 16 -> (gg00 ee00 cc00 aa00)
            const __m128i a2 = _mm_slli_epi32(a1, 16);
            // (gg00 ee00 cc00 aa00) & kMask_xf000 -> (g000 e000 c000 a000)
            const __m128i a3 = _mm_and_si128(a2, kMask_xf000);

            // Simply OR up i3 and a3 now and that's our result:
            // (0hhh 0fff 0ddd 0bbb) | (g000 e000 c000 a000) -> (ghhh efff cddd abbb)
            const __m128i r1 = _mm_or_si128(i3, a3);

            // write out the 128-bit result:
            _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), r1);
          }
    }
  }
  break;
  case GX_TF_C14X2:
    if (tlutfmt == GX_TL_RGB5A3)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
            DecodeBytes_C14X2_RGB5A3(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut);
    }
    else if (tlutfmt == GX_TL_IA8)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
            DecodeBytes_C14X2_IA8(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut);
    }
    else if (tlutfmt == GX_TL_RGB565)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
            DecodeBytes_C14X2_RGB565(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut);
    }
    break;
  case GX_TF_RGB565:
  {
    // JSD optimized with SSE2 intrinsics.
    // Produces an ~78% speed improvement over reference C implementation.
    const __m128i kMaskR0 = _mm_set1_epi32(0x000000F8);
    const __m128i kMaskG0 = _mm_set1_epi32(0x0000FC00);
    const __m128i kMaskG1 = _mm_set1_epi32(0x00000300);
    const __m128i kMaskB0 = _mm_set1_epi32(0x00F80000);
    const __m128i kAlpha = _mm_set1_epi32(0xFF000000);
    for (int y = 0; y < height; y += 4)
      for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
        for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
        {
          __m128i* dxtsrc = (__m128i*)(src + 8 * xStep);
          // Load 4x 16-bit colors: (0000 0000 hgfe dcba)
          // where hg, fe, ba, and dc are 16-bit colors in big-endian order
          const __m128i rgb565x4 = _mm_loadl_epi64(dxtsrc);

          // The big-endian 16-bit colors `ba` and `dc` look like 0b_gggBBBbb_RRRrrGGg in a little
          // endian xmm register
          // Unpack `hgfe dcba` to `hhgg ffee ddcc bbaa`, where each 32-bit word is now
          // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg
          const __m128i c0 = _mm_unpacklo_epi16(rgb565x4, rgb565x4);

          // swizzle 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg
          //      to 0b_11111111_BBBbbBBB_GGggggGG_RRRrrRRR

          // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg &
          // 0b_00000000_00000000_00000000_11111000 =
          // 0b_00000000_00000000_00000000_RRRrr000
          const __m128i r0 = _mm_and_si128(c0, kMaskR0);
          // 0b_00000000_00000000_00000000_RRRrr000 >> 5 [32] =
          // 0b_00000000_00000000_00000000_00000RRR
          const __m128i r1 = _mm_srli_epi32(r0, 5);

          // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 3 [32] =
          // 0b_000gggBB_BbbRRRrr_GGggggBB_BbbRRRrr &
          // 0b_00000000_00000000_11111100_00000000 =
          // 0b_00000000_00000000_GGgggg00_00000000
          const __m128i gtmp = _mm_srli_epi32(c0, 3);
          const __m128i g0 = _mm_and_si128(gtmp, kMaskG0);
          // 0b_GGggggBB_BbbRRRrr_GGggggBB_Bbb00000 >> 6 [32] =
          // 0b_000000GG_ggggBBBb_bRRRrrGG_ggggBBBb &
          // 0b_00000000_00000000_00000011_00000000 =
          // 0b_00000000_00000000_000000GG_00000000 =
          const __m128i g1 = _mm_and_si128(_mm_srli_epi32(gtmp, 6), kMaskG1);

          // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 5 [32] =
          // 0b_00000ggg_BBBbbRRR_rrGGgggg_BBBbbRRR &
          // 0b_00000000_11111000_00000000_00000000 =
          // 0b_00000000_BBBbb000_00000000_00000000
          const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), kMaskB0);
          // 0b_00000000_BBBbb000_00000000_00000000 >> 5 [16] =
          // 0b_00000000_00000BBB_00000000_00000000
          const __m128i b1 = _mm_srli_epi16(b0, 5);

          // OR together the final RGB bits and the alpha component:
          const __m128i abgr888x4 =
              _mm_or_si128(_mm_or_si128(_mm_or_si128(r0, r1), _mm_or_si128(g0, g1)),
                           _mm_or_si128(_mm_or_si128(b0, b1), kAlpha));

          __m128i* ptr = (__m128i*)(dst + (y + iy) * width + x);
          _mm_storeu_si128(ptr, abgr888x4);
        }
  }
  break;
  case GX_TF_RGB5A3:
  {
    const __m128i kMask_x1f = _mm_set1_epi32(0x0000001fL);
    const __m128i kMask_x0f = _mm_set1_epi32(0x0000000fL);
    const __m128i kMask_x07 = _mm_set1_epi32(0x00000007L);
    // This is the hard-coded 0xFF alpha constant that is ORed in place after the RGB are calculated
    // for the RGB555 case when (s[x] & 0x8000) is true for all pixels.
    const __m128i aVxff00 = _mm_set1_epi32(0xFF000000L);

#if _M_SSE >= 0x301
    // xsacha optimized with SSSE3 intrinsics (2 in 4 cases)
    // Produces a ~10% speed improvement over SSE2 implementation
    if (cpu_info.bSSSE3)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
          {
            u32* newdst = dst + (y + iy) * width + x;
            const __m128i mask = _mm_set_epi8(-128, -128, 6, 7, -128, -128, 4, 5, -128, -128, 2, 3,
                                              -128, -128, 0, 1);
            const __m128i valV =
                _mm_shuffle_epi8(_mm_loadl_epi64((const __m128i*)(src + 8 * xStep)), mask);
            int cmp =
                _mm_movemask_epi8(valV);  // MSB: 0x2 = val0; 0x20=val1; 0x200 = val2; 0x2000=val3
            if ((cmp & 0x2222) ==
                0x2222)  // SSSE3 case #1: all 4 pixels are in RGB555 and alpha = 0xFF.
            {
              // Swizzle bits: 00012345 -> 12345123

              // r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2);
              const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f);
              const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2));

              // g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2);
              const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f);
              const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2));

              // b0 = (((val0    ) & 0x1f) << 3) | (((val0    ) & 0x1f) >> 2);
              const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f);
              const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2));

              // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
              const __m128i final = _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)),
                                                 _mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00));
              _mm_storeu_si128((__m128i*)newdst, final);
            }
            else if (!(cmp & 0x2222))  // SSSE3 case #2: all 4 pixels are in RGBA4443.
            {
              // Swizzle bits: 00001234 -> 12341234

              // r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf);
              const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f);
              const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 4), tmprV);

              // g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf);
              const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f);
              const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 4), tmpgV);

              // b0 = (((val0    ) & 0xf) << 4) | ((val0    ) & 0xf);
              const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f);
              const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 4), tmpbV);
              // a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >>
              // 1);
              const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07);
              const __m128i aV =
                  _mm_or_si128(_mm_slli_epi16(tmpaV, 5),
                               _mm_or_si128(_mm_slli_epi16(tmpaV, 2), _mm_srli_epi16(tmpaV, 1)));

              // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
              const __m128i final =
                  _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)),
                               _mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24)));
              _mm_storeu_si128((__m128i*)newdst, final);
            }
            else
            {
              // TODO: Vectorise (Either 4-way branch or do both and select is better than this)
              u32* vals = (u32*)&valV;
              int r, g, b, a;
              for (int i = 0; i < 4; ++i)
              {
                if (vals[i] & 0x8000)
                {
                  // Swizzle bits: 00012345 -> 12345123
                  r = (((vals[i] >> 10) & 0x1f) << 3) | (((vals[i] >> 10) & 0x1f) >> 2);
                  g = (((vals[i] >> 5) & 0x1f) << 3) | (((vals[i] >> 5) & 0x1f) >> 2);
                  b = (((vals[i]) & 0x1f) << 3) | (((vals[i]) & 0x1f) >> 2);
                  a = 0xFF;
                }
                else
                {
                  a = (((vals[i] >> 12) & 0x7) << 5) | (((vals[i] >> 12) & 0x7) << 2) |
                      (((vals[i] >> 12) & 0x7) >> 1);
                  // Swizzle bits: 00001234 -> 12341234
                  r = (((vals[i] >> 8) & 0xf) << 4) | ((vals[i] >> 8) & 0xf);
                  g = (((vals[i] >> 4) & 0xf) << 4) | ((vals[i] >> 4) & 0xf);
                  b = (((vals[i]) & 0xf) << 4) | ((vals[i]) & 0xf);
                }
                newdst[i] = r | (g << 8) | (b << 16) | (a << 24);
              }
            }
          }
    }
    else
#endif
    // JSD optimized with SSE2 intrinsics (2 in 4 cases)
    // Produces a ~25% speed improvement over reference C implementation.
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
          for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++)
          {
            u32* newdst = dst + (y + iy) * width + x;
            const u16* newsrc = (const u16*)(src + 8 * xStep);

            // TODO: weak point
            const u16 val0 = Common::swap16(newsrc[0]);
            const u16 val1 = Common::swap16(newsrc[1]);
            const u16 val2 = Common::swap16(newsrc[2]);
            const u16 val3 = Common::swap16(newsrc[3]);

            const __m128i valV = _mm_set_epi16(0, val3, 0, val2, 0, val1, 0, val0);

            // Need to check all 4 pixels' MSBs to ensure we can do data-parallelism:
            if (((val0 & 0x8000) & (val1 & 0x8000) & (val2 & 0x8000) & (val3 & 0x8000)) == 0x8000)
            {
              // SSE2 case #1: all 4 pixels are in RGB555 and alpha = 0xFF.

              // Swizzle bits: 00012345 -> 12345123

              // r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2);
              const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f);
              const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2));

              // g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2);
              const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f);
              const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2));

              // b0 = (((val0    ) & 0x1f) << 3) | (((val0    ) & 0x1f) >> 2);
              const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f);
              const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2));

              // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
              const __m128i final = _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)),
                                                 _mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00));

              // write the final result:
              _mm_storeu_si128((__m128i*)newdst, final);
            }
            else if (((val0 & 0x8000) | (val1 & 0x8000) | (val2 & 0x8000) | (val3 & 0x8000)) ==
                     0x0000)
            {
              // SSE2 case #2: all 4 pixels are in RGBA4443.

              // Swizzle bits: 00001234 -> 12341234

              // r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf);
              const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f);
              const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 4), tmprV);

              // g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf);
              const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f);
              const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 4), tmpgV);

              // b0 = (((val0    ) & 0xf) << 4) | ((val0    ) & 0xf);
              const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f);
              const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 4), tmpbV);

              // a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >>
              // 1);
              const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07);
              const __m128i aV =
                  _mm_or_si128(_mm_slli_epi16(tmpaV, 5),
                               _mm_or_si128(_mm_slli_epi16(tmpaV, 2), _mm_srli_epi16(tmpaV, 1)));

              // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24);
              const __m128i final =
                  _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)),
                               _mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24)));

              // write the final result:
              _mm_storeu_si128((__m128i*)newdst, final);
            }
            else
            {
              // TODO: Vectorise (Either 4-way branch or do both and select is better than this)
              u32* vals = (u32*)&valV;
              int r, g, b, a;
              for (int i = 0; i < 4; ++i)
              {
                if (vals[i] & 0x8000)
                {
                  // Swizzle bits: 00012345 -> 12345123
                  r = (((vals[i] >> 10) & 0x1f) << 3) | (((vals[i] >> 10) & 0x1f) >> 2);
                  g = (((vals[i] >> 5) & 0x1f) << 3) | (((vals[i] >> 5) & 0x1f) >> 2);
                  b = (((vals[i]) & 0x1f) << 3) | (((vals[i]) & 0x1f) >> 2);
                  a = 0xFF;
                }
                else
                {
                  a = (((vals[i] >> 12) & 0x7) << 5) | (((vals[i] >> 12) & 0x7) << 2) |
                      (((vals[i] >> 12) & 0x7) >> 1);
                  // Swizzle bits: 00001234 -> 12341234
                  r = (((vals[i] >> 8) & 0xf) << 4) | ((vals[i] >> 8) & 0xf);
                  g = (((vals[i] >> 4) & 0xf) << 4) | ((vals[i] >> 4) & 0xf);
                  b = (((vals[i]) & 0xf) << 4) | ((vals[i]) & 0xf);
                }
                newdst[i] = r | (g << 8) | (b << 16) | (a << 24);
              }
            }
          }
    }
  }
  break;
  case GX_TF_RGBA8:  // speed critical
  {
#if _M_SSE >= 0x301
    // xsacha optimized with SSSE3 instrinsics
    // Produces a ~30% speed improvement over SSE2 implementation
    if (cpu_info.bSSSE3)
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
        {
          const u8* src2 = src + 64 * yStep;
          const __m128i mask0312 =
              _mm_set_epi8(12, 15, 13, 14, 8, 11, 9, 10, 4, 7, 5, 6, 0, 3, 1, 2);
          const __m128i ar0 = _mm_loadu_si128((__m128i*)src2);
          const __m128i ar1 = _mm_loadu_si128((__m128i*)src2 + 1);
          const __m128i gb0 = _mm_loadu_si128((__m128i*)src2 + 2);
          const __m128i gb1 = _mm_loadu_si128((__m128i*)src2 + 3);

          const __m128i rgba00 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar0, gb0), mask0312);
          const __m128i rgba01 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar0, gb0), mask0312);
          const __m128i rgba10 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar1, gb1), mask0312);
          const __m128i rgba11 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar1, gb1), mask0312);

          __m128i* dst128 = (__m128i*)(dst + (y + 0) * width + x);
          _mm_storeu_si128(dst128, rgba00);
          dst128 = (__m128i*)(dst + (y + 1) * width + x);
          _mm_storeu_si128(dst128, rgba01);
          dst128 = (__m128i*)(dst + (y + 2) * width + x);
          _mm_storeu_si128(dst128, rgba10);
          dst128 = (__m128i*)(dst + (y + 3) * width + x);
          _mm_storeu_si128(dst128, rgba11);
        }
    }
    else
#endif
    // JSD optimized with SSE2 intrinsics
    // Produces a ~68% speed improvement over reference C implementation.
    {
      for (int y = 0; y < height; y += 4)
        for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++)
        {
          // Input is divided up into 16-bit words. The texels are split up into AR and GB
          // components where all
          // AR components come grouped up first in 32 bytes followed by the GB components in 32
          // bytes. We are
          // processing 16 texels per each loop iteration, numbered from 0-f.
          //
          // Convention is:
          //   one byte is [component-name texel-number]
          //    __m128i is (4-bytes 4-bytes 4-bytes 4-bytes)
          //
          // Input  is ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A
          // 0][R 0])
          //           ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A
          //           8][R 8])
          //           ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G
          //           0][B 0])
          //           ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G
          //           8][B 8])
          //
          // Output is (RGBA3 RGBA2 RGBA1 RGBA0)
          //           (RGBA7 RGBA6 RGBA5 RGBA4)
          //           (RGBAb RGBAa RGBA9 RGBA8)
          //           (RGBAf RGBAe RGBAd RGBAc)
          const u8* src2 = src + 64 * yStep;
          // Loads the 1st half of AR components ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R
          // 3][A 2][R 2] [A 1][R 1][A 0][R 0])
          const __m128i ar0 = _mm_loadu_si128((__m128i*)src2);
          // Loads the 2nd half of AR components ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R
          // b][A a][R a] [A 9][R 9][A 8][R 8])
          const __m128i ar1 = _mm_loadu_si128((__m128i*)src2 + 1);
          // Loads the 1st half of GB components ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B
          // 3][G 2][B 2] [G 1][B 1][G 0][B 0])
          const __m128i gb0 = _mm_loadu_si128((__m128i*)src2 + 2);
          // Loads the 2nd half of GB components ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B
          // b][G a][B a] [G 9][B 9][G 8][B 8])
          const __m128i gb1 = _mm_loadu_si128((__m128i*)src2 + 3);
          __m128i rgba00, rgba01, rgba10, rgba11;
          const __m128i kMask_x000f =
              _mm_set_epi32(0x000000FFL, 0x000000FFL, 0x000000FFL, 0x000000FFL);
          const __m128i kMask_xf000 =
              _mm_set_epi32(0xFF000000L, 0xFF000000L, 0xFF000000L, 0xFF000000L);
          const __m128i kMask_x0ff0 =
              _mm_set_epi32(0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L);
          // Expand the AR components to fill out 32-bit words:
          // ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0])
          // -> ([A 3][A 3][R 3][R 3] [A 2][A 2][R 2][R 2] [A 1][A 1][R 1][R 1] [A 0][A 0][R 0][R
          // 0])
          const __m128i aarr00 = _mm_unpacklo_epi8(ar0, ar0);
          // ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0])
          // -> ([A 7][A 7][R 7][R 7] [A 6][A 6][R 6][R 6] [A 5][A 5][R 5][R 5] [A 4][A 4][R 4][R
          // 4])
          const __m128i aarr01 = _mm_unpackhi_epi8(ar0, ar0);
          // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8])
          // -> ([A b][A b][R b][R b] [A a][A a][R a][R a] [A 9][A 9][R 9][R 9] [A 8][A 8][R 8][R
          // 8])
          const __m128i aarr10 = _mm_unpacklo_epi8(ar1, ar1);
          // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8])
          // -> ([A f][A f][R f][R f] [A e][A e][R e][R e] [A d][A d][R d][R d] [A c][A c][R c][R
          // c])
          const __m128i aarr11 = _mm_unpackhi_epi8(ar1, ar1);

          // Move A right 16 bits and mask off everything but the lowest  8 bits to get A in its
          // final place:
          const __m128i ___a00 = _mm_and_si128(_mm_srli_epi32(aarr00, 16), kMask_x000f);
          // Move R left  16 bits and mask off everything but the highest 8 bits to get R in its
          // final place:
          const __m128i r___00 = _mm_and_si128(_mm_slli_epi32(aarr00, 16), kMask_xf000);
          // OR the two together to get R and A in their final places:
          const __m128i r__a00 = _mm_or_si128(r___00, ___a00);

          const __m128i ___a01 = _mm_and_si128(_mm_srli_epi32(aarr01, 16), kMask_x000f);
          const __m128i r___01 = _mm_and_si128(_mm_slli_epi32(aarr01, 16), kMask_xf000);
          const __m128i r__a01 = _mm_or_si128(r___01, ___a01);

          const __m128i ___a10 = _mm_and_si128(_mm_srli_epi32(aarr10, 16), kMask_x000f);
          const __m128i r___10 = _mm_and_si128(_mm_slli_epi32(aarr10, 16), kMask_xf000);
          const __m128i r__a10 = _mm_or_si128(r___10, ___a10);

          const __m128i ___a11 = _mm_and_si128(_mm_srli_epi32(aarr11, 16), kMask_x000f);
          const __m128i r___11 = _mm_and_si128(_mm_slli_epi32(aarr11, 16), kMask_xf000);
          const __m128i r__a11 = _mm_or_si128(r___11, ___a11);

          // Expand the GB components to fill out 32-bit words:
          // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0])
          // -> ([G 3][G 3][B 3][B 3] [G 2][G 2][B 2][B 2] [G 1][G 1][B 1][B 1] [G 0][G 0][B 0][B
          // 0])
          const __m128i ggbb00 = _mm_unpacklo_epi8(gb0, gb0);
          // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0])
          // -> ([G 7][G 7][B 7][B 7] [G 6][G 6][B 6][B 6] [G 5][G 5][B 5][B 5] [G 4][G 4][B 4][B
          // 4])
          const __m128i ggbb01 = _mm_unpackhi_epi8(gb0, gb0);
          // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8])
          // -> ([G b][G b][B b][B b] [G a][G a][B a][B a] [G 9][G 9][B 9][B 9] [G 8][G 8][B 8][B
          // 8])
          const __m128i ggbb10 = _mm_unpacklo_epi8(gb1, gb1);
          // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8])
          // -> ([G f][G f][B f][B f] [G e][G e][B e][B e] [G d][G d][B d][B d] [G c][G c][B c][B
          // c])
          const __m128i ggbb11 = _mm_unpackhi_epi8(gb1, gb1);

          // G and B are already in perfect spots in the center, just remove the extra copies in the
          // 1st and 4th positions:
          const __m128i _gb_00 = _mm_and_si128(ggbb00, kMask_x0ff0);
          const __m128i _gb_01 = _mm_and_si128(ggbb01, kMask_x0ff0);
          const __m128i _gb_10 = _mm_and_si128(ggbb10, kMask_x0ff0);
          const __m128i _gb_11 = _mm_and_si128(ggbb11, kMask_x0ff0);

          // Now join up R__A and _GB_ to get RGBA!
          rgba00 = _mm_or_si128(r__a00, _gb_00);
          rgba01 = _mm_or_si128(r__a01, _gb_01);
          rgba10 = _mm_or_si128(r__a10, _gb_10);
          rgba11 = _mm_or_si128(r__a11, _gb_11);
          // Write em out!
          __m128i* dst128 = (__m128i*)(dst + (y + 0) * width + x);
          _mm_storeu_si128(dst128, rgba00);
          dst128 = (__m128i*)(dst + (y + 1) * width + x);
          _mm_storeu_si128(dst128, rgba01);
          dst128 = (__m128i*)(dst + (y + 2) * width + x);
          _mm_storeu_si128(dst128, rgba10);
          dst128 = (__m128i*)(dst + (y + 3) * width + x);
          _mm_storeu_si128(dst128, rgba11);
        }
    }
  }
  break;
  case GX_TF_CMPR:  // speed critical
    // The metroid games use this format almost exclusively.
    {
      // JSD optimized with SSE2 intrinsics.
      // Produces a ~50% improvement for x86 and a ~40% improvement for x64 in speed over reference
      // C implementation.
      // The x64 compiled reference C code is faster than the x86 compiled reference C code, but the
      // SSE2 is
      // faster than both.
      for (int y = 0; y < height; y += 8)
      {
        for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++)
        {
          // We handle two DXT blocks simultaneously to take full advantage of SSE2's 128-bit
          // registers.
          // This is ideal because a single DXT block contains 2 RGBA colors when decoded from their
          // 16-bit.
          // Two DXT blocks therefore contain 4 RGBA colors to be processed. The processing is
          // parallelizable
          // at this level, so we do.
          for (int z = 0, xStep = 2 * yStep; z < 2; ++z, xStep++)
          {
            // JSD NOTE: You may see many strange patterns of behavior in the below code, but they
            // are for performance reasons. Sometimes, calculating what should be obvious hard-coded
            // constants is faster than loading their values from memory. Unfortunately, there is no
            // way to inline 128-bit constants from opcodes so they must be loaded from memory. This
            // seems a little ridiculous to me in that you can't even generate a constant value of 1
            // without
            // having to load it from memory. So, I stored the minimal constant I could, 128-bits
            // worth
            // of 1s :). Then I use sequences of shifts to squash it to the appropriate size and bit
            // positions that I need.

            const __m128i allFFs128 = _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128());

            // Load 128 bits, i.e. two DXTBlocks (64-bits each)
            const __m128i dxt =
                _mm_loadu_si128((__m128i*)(src + sizeof(struct DXTBlock) * 2 * xStep));

            // Copy the 2-bit indices from each DXT block:
            alignas(16) u32 dxttmp[4];
            _mm_store_si128((__m128i*)dxttmp, dxt);

            u32 dxt0sel = dxttmp[1];
            u32 dxt1sel = dxttmp[3];

            __m128i argb888x4;
            __m128i c1 = _mm_unpackhi_epi16(dxt, dxt);
            c1 = _mm_slli_si128(c1, 8);
            const __m128i c0 = _mm_or_si128(
                c1, _mm_srli_si128(_mm_slli_si128(_mm_unpacklo_epi16(dxt, dxt), 8), 8));

            // Compare rgb0 to rgb1:
            // Each 32-bit word will contain either 0xFFFFFFFF or 0x00000000 for true/false.
            const __m128i c0cmp = _mm_srli_epi32(_mm_slli_epi32(_mm_srli_epi64(c0, 8), 16), 16);
            const __m128i c0shr = _mm_srli_epi64(c0cmp, 32);
            const __m128i cmprgb0rgb1 = _mm_cmpgt_epi32(c0cmp, c0shr);

            int cmp0 = _mm_extract_epi16(cmprgb0rgb1, 0);
            int cmp1 = _mm_extract_epi16(cmprgb0rgb1, 4);

            // green:
            // NOTE: We start with the larger number of bits (6) firts for G and shift the mask down
            // 1 bit to get a 5-bit mask
            // later for R and B components.
            // low6mask == _mm_set_epi32(0x0000FC00, 0x0000FC00, 0x0000FC00, 0x0000FC00)
            const __m128i low6mask = _mm_slli_epi32(_mm_srli_epi32(allFFs128, 24 + 2), 8 + 2);
            const __m128i gtmp = _mm_srli_epi32(c0, 3);
            const __m128i g0 = _mm_and_si128(gtmp, low6mask);
            // low3mask == _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300)
            const __m128i g1 =
                _mm_and_si128(_mm_srli_epi32(gtmp, 6),
                              _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300));
            argb888x4 = _mm_or_si128(g0, g1);
            // red:
            // low5mask == _mm_set_epi32(0x000000F8, 0x000000F8, 0x000000F8, 0x000000F8)
            const __m128i low5mask = _mm_slli_epi32(_mm_srli_epi32(low6mask, 8 + 3), 3);
            const __m128i r0 = _mm_and_si128(c0, low5mask);
            const __m128i r1 = _mm_srli_epi32(r0, 5);
            argb888x4 = _mm_or_si128(argb888x4, _mm_or_si128(r0, r1));
            // blue:
            // _mm_slli_epi32(low5mask, 16) == _mm_set_epi32(0x00F80000, 0x00F80000, 0x00F80000,
            // 0x00F80000)
            const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), _mm_slli_epi32(low5mask, 16));
            const __m128i b1 = _mm_srli_epi16(b0, 5);
            // OR in the fixed alpha component
            // _mm_slli_epi32( allFFs128, 24 ) == _mm_set_epi32(0xFF000000, 0xFF000000, 0xFF000000,
            // 0xFF000000)
            argb888x4 = _mm_or_si128(_mm_or_si128(argb888x4, _mm_slli_epi32(allFFs128, 24)),
                                     _mm_or_si128(b0, b1));
            // calculate RGB2 and RGB3:
            const __m128i rgb0 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(2, 2, 0, 0));
            const __m128i rgb1 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(3, 3, 1, 1));
            const __m128i rrggbb0 =
                _mm_and_si128(_mm_unpacklo_epi8(rgb0, rgb0), _mm_srli_epi16(allFFs128, 8));
            const __m128i rrggbb1 =
                _mm_and_si128(_mm_unpacklo_epi8(rgb1, rgb1), _mm_srli_epi16(allFFs128, 8));
            const __m128i rrggbb01 =
                _mm_and_si128(_mm_unpackhi_epi8(rgb0, rgb0), _mm_srli_epi16(allFFs128, 8));
            const __m128i rrggbb11 =
                _mm_and_si128(_mm_unpackhi_epi8(rgb1, rgb1), _mm_srli_epi16(allFFs128, 8));

            __m128i rgb2, rgb3;

            // if (rgb0 > rgb1):
            if (cmp0 != 0)
            {
              // RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3)  using arithmetic shifts to
              // extend sign (not logical shifts)
              const __m128i rrggbbsub = _mm_subs_epi16(rrggbb1, rrggbb0);
              const __m128i rrggbbsubshr1 = _mm_srai_epi16(rrggbbsub, 1);
              const __m128i rrggbbsubshr3 = _mm_srai_epi16(rrggbbsub, 3);
              const __m128i shr1subshr3 = _mm_sub_epi16(rrggbbsubshr1, rrggbbsubshr3);
              // low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff,
              // 0x00ff)
              const __m128i low8mask16 = _mm_srli_epi16(allFFs128, 8);
              const __m128i rrggbbdelta = _mm_and_si128(shr1subshr3, low8mask16);
              const __m128i rgbdeltadup = _mm_packus_epi16(rrggbbdelta, rrggbbdelta);
              const __m128i rgbdelta = _mm_srli_si128(_mm_slli_si128(rgbdeltadup, 8), 8);

              rgb2 = _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta), _mm_srli_si128(allFFs128, 8));
              rgb3 = _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta), _mm_srli_si128(allFFs128, 8));
            }
            else
            {
              // RGB2b = avg(RGB0, RGB1)
              const __m128i rrggbb21 = _mm_avg_epu16(rrggbb0, rrggbb1);
              const __m128i rgb210 = _mm_srli_si128(_mm_packus_epi16(rrggbb21, rrggbb21), 8);
              rgb2 = rgb210;
              rgb3 = _mm_and_si128(
                  _mm_srli_si128(_mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(1, 1, 1, 1)), 8),
                  _mm_srli_epi32(allFFs128, 8));
            }

            // if (rgb0 > rgb1):
            if (cmp1 != 0)
            {
              // RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3)  using arithmetic shifts to
              // extend sign (not logical shifts)
              const __m128i rrggbbsub1 = _mm_subs_epi16(rrggbb11, rrggbb01);
              const __m128i rrggbbsubshr11 = _mm_srai_epi16(rrggbbsub1, 1);
              const __m128i rrggbbsubshr31 = _mm_srai_epi16(rrggbbsub1, 3);
              const __m128i shr1subshr31 = _mm_sub_epi16(rrggbbsubshr11, rrggbbsubshr31);
              // low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff,
              // 0x00ff)
              const __m128i low8mask16 = _mm_srli_epi16(allFFs128, 8);
              const __m128i rrggbbdelta1 = _mm_and_si128(shr1subshr31, low8mask16);
              __m128i rgbdelta1 = _mm_packus_epi16(rrggbbdelta1, rrggbbdelta1);
              rgbdelta1 = _mm_slli_si128(rgbdelta1, 8);

              rgb2 = _mm_or_si128(
                  rgb2, _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta1), _mm_slli_si128(allFFs128, 8)));
              rgb3 = _mm_or_si128(
                  rgb3, _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta1), _mm_slli_si128(allFFs128, 8)));
            }
            else
            {
              // RGB2b = avg(RGB0, RGB1)
              const __m128i rrggbb211 = _mm_avg_epu16(rrggbb01, rrggbb11);
              const __m128i rgb211 = _mm_slli_si128(_mm_packus_epi16(rrggbb211, rrggbb211), 8);
              rgb2 = _mm_or_si128(rgb2, rgb211);

              // _mm_srli_epi32( allFFs128, 8 ) == _mm_set_epi32(0x00FFFFFF, 0x00FFFFFF, 0x00FFFFFF,
              // 0x00FFFFFF)
              // Make this color fully transparent:
              rgb3 = _mm_or_si128(rgb3,
                                  _mm_and_si128(_mm_and_si128(rgb1, _mm_srli_epi32(allFFs128, 8)),
                                                _mm_slli_si128(allFFs128, 8)));
            }

            // Create an array for color lookups for DXT0 so we can use the 2-bit indices:
            const __m128i mmcolors0 = _mm_or_si128(
                _mm_or_si128(_mm_srli_si128(_mm_slli_si128(argb888x4, 8), 8),
                             _mm_slli_si128(_mm_srli_si128(_mm_slli_si128(rgb2, 8), 8 + 4), 8)),
                _mm_slli_si128(_mm_srli_si128(rgb3, 4), 8 + 4));

            // Create an array for color lookups for DXT1 so we can use the 2-bit indices:
            const __m128i mmcolors1 =
                _mm_or_si128(_mm_or_si128(_mm_srli_si128(argb888x4, 8),
                                          _mm_slli_si128(_mm_srli_si128(rgb2, 8 + 4), 8)),
                             _mm_slli_si128(_mm_srli_si128(rgb3, 8 + 4), 8 + 4));

// The #ifdef CHECKs here and below are to compare correctness of output against the reference code.
// Don't use them in a normal build.
#ifdef CHECK
            // REFERENCE:
            u32 tmp0[4][4], tmp1[4][4];

            DecodeDXTBlock(&(tmp0[0][0]), (const DXTBlock*)src, 4);
            DecodeDXTBlock(&(tmp1[0][0]), (const DXTBlock*)(src + 8), 4);
#endif

            u32* dst32 = (dst + (y + z * 4) * width + x);

            // Copy the colors here:
            alignas(16) u32 colors0[4];
            alignas(16) u32 colors1[4];
            _mm_store_si128((__m128i*)colors0, mmcolors0);
            _mm_store_si128((__m128i*)colors1, mmcolors1);

            // Row 0:
            dst32[(width * 0) + 0] = colors0[(dxt0sel >> ((0 * 8) + 6)) & 3];
            dst32[(width * 0) + 1] = colors0[(dxt0sel >> ((0 * 8) + 4)) & 3];
            dst32[(width * 0) + 2] = colors0[(dxt0sel >> ((0 * 8) + 2)) & 3];
            dst32[(width * 0) + 3] = colors0[(dxt0sel >> ((0 * 8) + 0)) & 3];
            dst32[(width * 0) + 4] = colors1[(dxt1sel >> ((0 * 8) + 6)) & 3];
            dst32[(width * 0) + 5] = colors1[(dxt1sel >> ((0 * 8) + 4)) & 3];
            dst32[(width * 0) + 6] = colors1[(dxt1sel >> ((0 * 8) + 2)) & 3];
            dst32[(width * 0) + 7] = colors1[(dxt1sel >> ((0 * 8) + 0)) & 3];
#ifdef CHECK
            assert(memcmp(&(tmp0[0]), &dst32[(width * 0)], 16) == 0);
            assert(memcmp(&(tmp1[0]), &dst32[(width * 0) + 4], 16) == 0);
#endif
            // Row 1:
            dst32[(width * 1) + 0] = colors0[(dxt0sel >> ((1 * 8) + 6)) & 3];
            dst32[(width * 1) + 1] = colors0[(dxt0sel >> ((1 * 8) + 4)) & 3];
            dst32[(width * 1) + 2] = colors0[(dxt0sel >> ((1 * 8) + 2)) & 3];
            dst32[(width * 1) + 3] = colors0[(dxt0sel >> ((1 * 8) + 0)) & 3];
            dst32[(width * 1) + 4] = colors1[(dxt1sel >> ((1 * 8) + 6)) & 3];
            dst32[(width * 1) + 5] = colors1[(dxt1sel >> ((1 * 8) + 4)) & 3];
            dst32[(width * 1) + 6] = colors1[(dxt1sel >> ((1 * 8) + 2)) & 3];
            dst32[(width * 1) + 7] = colors1[(dxt1sel >> ((1 * 8) + 0)) & 3];
#ifdef CHECK
            assert(memcmp(&(tmp0[1]), &dst32[(width * 1)], 16) == 0);
            assert(memcmp(&(tmp1[1]), &dst32[(width * 1) + 4], 16) == 0);
#endif
            // Row 2:
            dst32[(width * 2) + 0] = colors0[(dxt0sel >> ((2 * 8) + 6)) & 3];
            dst32[(width * 2) + 1] = colors0[(dxt0sel >> ((2 * 8) + 4)) & 3];
            dst32[(width * 2) + 2] = colors0[(dxt0sel >> ((2 * 8) + 2)) & 3];
            dst32[(width * 2) + 3] = colors0[(dxt0sel >> ((2 * 8) + 0)) & 3];
            dst32[(width * 2) + 4] = colors1[(dxt1sel >> ((2 * 8) + 6)) & 3];
            dst32[(width * 2) + 5] = colors1[(dxt1sel >> ((2 * 8) + 4)) & 3];
            dst32[(width * 2) + 6] = colors1[(dxt1sel >> ((2 * 8) + 2)) & 3];
            dst32[(width * 2) + 7] = colors1[(dxt1sel >> ((2 * 8) + 0)) & 3];
#ifdef CHECK
            assert(memcmp(&(tmp0[2]), &dst32[(width * 2)], 16) == 0);
            assert(memcmp(&(tmp1[2]), &dst32[(width * 2) + 4], 16) == 0);
#endif
            // Row 3:
            dst32[(width * 3) + 0] = colors0[(dxt0sel >> ((3 * 8) + 6)) & 3];
            dst32[(width * 3) + 1] = colors0[(dxt0sel >> ((3 * 8) + 4)) & 3];
            dst32[(width * 3) + 2] = colors0[(dxt0sel >> ((3 * 8) + 2)) & 3];
            dst32[(width * 3) + 3] = colors0[(dxt0sel >> ((3 * 8) + 0)) & 3];
            dst32[(width * 3) + 4] = colors1[(dxt1sel >> ((3 * 8) + 6)) & 3];
            dst32[(width * 3) + 5] = colors1[(dxt1sel >> ((3 * 8) + 4)) & 3];
            dst32[(width * 3) + 6] = colors1[(dxt1sel >> ((3 * 8) + 2)) & 3];
            dst32[(width * 3) + 7] = colors1[(dxt1sel >> ((3 * 8) + 0)) & 3];
#ifdef CHECK
            assert(memcmp(&(tmp0[3]), &dst32[(width * 3)], 16) == 0);
            assert(memcmp(&(tmp1[3]), &dst32[(width * 3) + 4], 16) == 0);
#endif
          }
        }
      }
      break;
    }
  }
}