mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-27 10:29:07 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			389 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			389 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2013 Dolphin Emulator Project
 | |
| // Licensed under GPLv2
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| // Dolby Pro Logic 2 decoder from ffdshow-tryout
 | |
| //  * Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
 | |
| //  * Copyright (c) 2004-2006 Milan Cutka
 | |
| //  * based on mplayer HRTF plugin by ylai
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <string.h>
 | |
| #include <vector>
 | |
| 
 | |
| #include "AudioCommon/DPL2Decoder.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/MathUtil.h"
 | |
| 
 | |
| #ifndef M_PI
 | |
| #define M_PI 3.14159265358979323846
 | |
| #endif
 | |
| #ifndef M_SQRT1_2
 | |
| #define M_SQRT1_2 0.70710678118654752440
 | |
| #endif
 | |
| 
 | |
| static int olddelay = -1;
 | |
| static unsigned int oldfreq = 0;
 | |
| static unsigned int dlbuflen;
 | |
| static int cyc_pos;
 | |
| static float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
 | |
| static std::vector<float> fwrbuf_l, fwrbuf_r;
 | |
| static float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
 | |
| static std::vector<float> lf, rf, lr, rr, cf, cr;
 | |
| static float LFE_buf[256];
 | |
| static unsigned int lfe_pos;
 | |
| static float *filter_coefs_lfe;
 | |
| static unsigned int len125;
 | |
| 
 | |
| template<class T, class _ftype_t>
 | |
| static _ftype_t DotProduct(int count,const T *buf,const _ftype_t *coefficients)
 | |
| {
 | |
| 	float sum0=0,sum1=0,sum2=0,sum3=0;
 | |
| 	for (;count>=4;buf+=4,coefficients+=4,count-=4)
 | |
| 	{
 | |
| 		sum0+=buf[0]*coefficients[0];
 | |
| 		sum1+=buf[1]*coefficients[1];
 | |
| 		sum2+=buf[2]*coefficients[2];
 | |
| 		sum3+=buf[3]*coefficients[3];
 | |
| 	}
 | |
| 
 | |
| 	while (count--)
 | |
| 		sum0+= *buf++ * *coefficients++;
 | |
| 
 | |
| 	return sum0+sum1+sum2+sum3;
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| static T FIRFilter(const T *buf, int pos, int len, int count, const float *coefficients)
 | |
| {
 | |
| 	int count1, count2;
 | |
| 
 | |
| 	if (pos >= count)
 | |
| 	{
 | |
| 		pos -= count;
 | |
| 		count1 = count; count2 = 0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		count2 = pos;
 | |
| 		count1 = count - pos;
 | |
| 		pos = len - count1;
 | |
| 	}
 | |
| 
 | |
| 	// high part of window
 | |
| 	const T *ptr = &buf[pos];
 | |
| 
 | |
| 	float r1=DotProduct(count1,ptr,coefficients);coefficients+=count1;
 | |
| 	float r2=DotProduct(count2,buf,coefficients);
 | |
| 	return T(r1+r2);
 | |
| }
 | |
| 
 | |
| /*
 | |
| // Hamming
 | |
| //                        2*pi*k
 | |
| // w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
 | |
| //                         N-1
 | |
| //
 | |
| // n window length
 | |
| // w buffer for the window parameters
 | |
| */
 | |
| static void Hamming(int n, float* w)
 | |
| {
 | |
| 	float k = float(2*M_PI/((float)(n-1))); // 2*pi/(N-1)
 | |
| 
 | |
| 	// Calculate window coefficients
 | |
| 	for (int i = 0; i < n; i++)
 | |
| 		*w++ = float(0.54 - 0.46*cos(k*(float)i));
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| *  FIR filter design
 | |
| ******************************************************************************/
 | |
| 
 | |
| /* Design FIR filter using the Window method
 | |
| 
 | |
| n     filter length must be odd for HP and BS filters
 | |
| w     buffer for the filter taps (must be n long)
 | |
| fc    cutoff frequencies (1 for LP and HP, 2 for BP and BS)
 | |
| 0 < fc < 1 where 1 <=> Fs/2
 | |
| flags window and filter type as defined in filter.h
 | |
| variables are ored together: i.e. LP|HAMMING will give a
 | |
| low pass filter designed using a hamming window
 | |
| opt   beta constant used only when designing using kaiser windows
 | |
| 
 | |
| returns 0 if OK, -1 if fail
 | |
| */
 | |
| static float* DesignFIR(unsigned int *n, float* fc, float opt)
 | |
| {
 | |
| 	unsigned int  o   = *n & 1;              // Indicator for odd filter length
 | |
| 	unsigned int  end = ((*n + 1) >> 1) - o; // Loop end
 | |
| 
 | |
| 	float k1 = 2 * float(M_PI);              // 2*pi*fc1
 | |
| 	float k2 = 0.5f * (float)(1 - o);        // Constant used if the filter has even length
 | |
| 	float g  = 0.0f;                         // Gain
 | |
| 	float t1;                                // Temporary variables
 | |
| 	float fc1;                               // Cutoff frequencies
 | |
| 
 | |
| 	// Sanity check
 | |
| 	if (*n==0) return nullptr;
 | |
| 	MathUtil::Clamp(&fc[0],float(0.001),float(1));
 | |
| 
 | |
| 	float *w=(float*)calloc(sizeof(float),*n);
 | |
| 
 | |
| 	// Get window coefficients
 | |
| 	Hamming(*n,w);
 | |
| 
 | |
| 	fc1=*fc;
 | |
| 	// Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
 | |
| 	fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25f;
 | |
| 	k1 *= fc1;
 | |
| 
 | |
| 	// Low pass filter
 | |
| 
 | |
| 	// If the filter length is odd, there is one point which is exactly
 | |
| 	// in the middle. The value at this point is 2*fCutoff*sin(x)/x,
 | |
| 	// where x is zero. To make sure nothing strange happens, we set this
 | |
| 	// value separately.
 | |
| 	if (o)
 | |
| 	{
 | |
| 		w[end] = fc1 * w[end] * 2.0f;
 | |
| 		g=w[end];
 | |
| 	}
 | |
| 
 | |
| 	// Create filter
 | |
| 	for (u32 i = 0; i < end; i++)
 | |
| 	{
 | |
| 		t1 = (float)(i+1) - k2;
 | |
| 		w[end-i-1] = w[*n-end+i] = float(w[end-i-1] * sin(k1 * t1)/(M_PI * t1)); // Sinc
 | |
| 		g += 2*w[end-i-1]; // Total gain in filter
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	// Normalize gain
 | |
| 	g=1/g;
 | |
| 	for (u32 i = 0; i < *n; i++)
 | |
| 		w[i] *= g;
 | |
| 
 | |
| 	return w;
 | |
| }
 | |
| 
 | |
| static void OnSeek()
 | |
| {
 | |
| 	l_fwr = r_fwr = lpr_fwr = lmr_fwr = 0;
 | |
| 	std::fill(fwrbuf_l.begin(), fwrbuf_l.end(), 0.0f);
 | |
| 	std::fill(fwrbuf_r.begin(), fwrbuf_r.end(), 0.0f);
 | |
| 	adapt_l_gain = adapt_r_gain = adapt_lpr_gain = adapt_lmr_gain = 0;
 | |
| 	std::fill(lf.begin(), lf.end(), 0.0f);
 | |
| 	std::fill(rf.begin(), rf.end(), 0.0f);
 | |
| 	std::fill(lr.begin(), lr.end(), 0.0f);
 | |
| 	std::fill(rr.begin(), rr.end(), 0.0f);
 | |
| 	std::fill(cf.begin(), cf.end(), 0.0f);
 | |
| 	std::fill(cr.begin(), cr.end(), 0.0f);
 | |
| 	lfe_pos = 0;
 | |
| 	memset(LFE_buf, 0, sizeof(LFE_buf));
 | |
| }
 | |
| 
 | |
| static void Done()
 | |
| {
 | |
| 	OnSeek();
 | |
| 
 | |
| 	if (filter_coefs_lfe)
 | |
| 	{
 | |
| 		free(filter_coefs_lfe);
 | |
| 	}
 | |
| 
 | |
| 	filter_coefs_lfe = nullptr;
 | |
| }
 | |
| 
 | |
| static float* CalculateCoefficients125HzLowpass(int rate)
 | |
| {
 | |
| 	len125 = 256;
 | |
| 	float f = 125.0f / (rate / 2);
 | |
| 	float *coeffs = DesignFIR(&len125, &f, 0);
 | |
| 	static const float M3_01DB = 0.7071067812f;
 | |
| 	for (unsigned int i = 0; i < len125; i++)
 | |
| 	{
 | |
| 		coeffs[i] *= M3_01DB;
 | |
| 	}
 | |
| 	return coeffs;
 | |
| }
 | |
| 
 | |
| static float PassiveLock(float x)
 | |
| {
 | |
| 	static const float MATAGCLOCK = 0.2f;  /* AGC range (around 1) where the matrix behaves passively */
 | |
| 	const float x1 = x - 1;
 | |
| 	const float ax1s = fabs(x - 1) * (1.0f / MATAGCLOCK);
 | |
| 	return x1 - x1 / (1 + ax1s * ax1s) + 1;
 | |
| }
 | |
| 
 | |
| static void MatrixDecode(const float *in, const int k, const int il,
 | |
| 	const int ir, bool decode_rear,
 | |
| 	const int _dlbuflen,
 | |
| 	float _l_fwr, float _r_fwr,
 | |
| 	float _lpr_fwr, float _lmr_fwr,
 | |
| 	float *_adapt_l_gain, float *_adapt_r_gain,
 | |
| 	float *_adapt_lpr_gain, float *_adapt_lmr_gain,
 | |
| 	float *_lf, float *_rf, float *_lr,
 | |
| 	float *_rr, float *_cf)
 | |
| {
 | |
| 	static const float M9_03DB = 0.3535533906f;
 | |
| 	static const float MATAGCTRIG = 8.0f;   /* (Fuzzy) AGC trigger */
 | |
| 	static const float MATAGCDECAY = 1.0f;  /* AGC baseline decay rate (1/samp.) */
 | |
| 	static const float MATCOMPGAIN = 0.37f; /* Cross talk compensation gain,  0.50 - 0.55 is full cancellation. */
 | |
| 
 | |
| 	const int kr = (k + olddelay) % _dlbuflen;
 | |
| 	float l_gain = (_l_fwr + _r_fwr) / (1 + _l_fwr + _l_fwr);
 | |
| 	float r_gain = (_l_fwr + _r_fwr) / (1 + _r_fwr + _r_fwr);
 | |
| 	// The 2nd axis has strong gain fluctuations, and therefore require
 | |
| 	// limits.  The factor corresponds to the 1 / amplification of (Lt
 | |
| 	// - Rt) when (Lt, Rt) is strongly correlated. (e.g. during
 | |
| 	// dialogues).  It should be bigger than -12 dB to prevent
 | |
| 	// distortion.
 | |
| 	float lmr_lim_fwr = _lmr_fwr > M9_03DB * _lpr_fwr ? _lmr_fwr : M9_03DB * _lpr_fwr;
 | |
| 	float lpr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + _lpr_fwr + _lpr_fwr);
 | |
| 	float lmr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + lmr_lim_fwr + lmr_lim_fwr);
 | |
| 	float lmr_unlim_gain = (_lpr_fwr + _lmr_fwr) / (1 + _lmr_fwr + _lmr_fwr);
 | |
| 	float lpr, lmr;
 | |
| 	float l_agc, r_agc, lpr_agc, lmr_agc;
 | |
| 	float f, d_gain, c_gain, c_agc_cfk;
 | |
| 
 | |
| 	/*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
 | |
| 	/* AGC adaption */
 | |
| 	d_gain = (fabs(l_gain - *_adapt_l_gain) + fabs(r_gain - *_adapt_r_gain)) * 0.5f;
 | |
| 	f = d_gain * (1.0f / MATAGCTRIG);
 | |
| 	f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
 | |
| 	*_adapt_l_gain = (1 - f) * *_adapt_l_gain + f * l_gain;
 | |
| 	*_adapt_r_gain = (1 - f) * *_adapt_r_gain + f * r_gain;
 | |
| 	/* Matrix */
 | |
| 	l_agc = in[il] * PassiveLock(*_adapt_l_gain);
 | |
| 	r_agc = in[ir] * PassiveLock(*_adapt_r_gain);
 | |
| 	_cf[k] = (l_agc + r_agc) * (float)M_SQRT1_2;
 | |
| 	if (decode_rear)
 | |
| 	{
 | |
| 		_lr[kr] = _rr[kr] = (l_agc - r_agc) * (float)M_SQRT1_2;
 | |
| 		// Stereo rear channel is steered with the same AGC steering as
 | |
| 		// the decoding matrix. Note this requires a fast updating AGC
 | |
| 		// at the order of 20 ms (which is the case here).
 | |
| 		_lr[kr] *= (_l_fwr + _l_fwr) / (1 + _l_fwr + _r_fwr);
 | |
| 		_rr[kr] *= (_r_fwr + _r_fwr) / (1 + _l_fwr + _r_fwr);
 | |
| 	}
 | |
| 
 | |
| 	/*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
 | |
| 	lpr = (in[il] + in[ir]) * (float)M_SQRT1_2;
 | |
| 	lmr = (in[il] - in[ir]) * (float)M_SQRT1_2;
 | |
| 	/* AGC adaption */
 | |
| 	d_gain = fabs(lmr_unlim_gain - *_adapt_lmr_gain);
 | |
| 	f = d_gain * (1.0f / MATAGCTRIG);
 | |
| 	f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
 | |
| 	*_adapt_lpr_gain = (1 - f) * *_adapt_lpr_gain + f * lpr_gain;
 | |
| 	*_adapt_lmr_gain = (1 - f) * *_adapt_lmr_gain + f * lmr_gain;
 | |
| 	/* Matrix */
 | |
| 	lpr_agc = lpr * PassiveLock(*_adapt_lpr_gain);
 | |
| 	lmr_agc = lmr * PassiveLock(*_adapt_lmr_gain);
 | |
| 	_lf[k] = (lpr_agc + lmr_agc) * (float)M_SQRT1_2;
 | |
| 	_rf[k] = (lpr_agc - lmr_agc) * (float)M_SQRT1_2;
 | |
| 
 | |
| 	/*** CENTER FRONT CANCELLATION ***/
 | |
| 	// A heuristic approach exploits that Lt + Rt gain contains the
 | |
| 	// information about Lt, Rt correlation.  This effectively reshapes
 | |
| 	// the front and rear "cones" to concentrate Lt + Rt to C and
 | |
| 	// introduce Lt - Rt in L, R.
 | |
| 	/* 0.67677 is the empirical lower bound for lpr_gain. */
 | |
| 	c_gain = 8 * (*_adapt_lpr_gain - 0.67677f);
 | |
| 	c_gain = c_gain > 0 ? c_gain : 0;
 | |
| 	// c_gain should not be too high, not even reaching full
 | |
| 	// cancellation (~ 0.50 - 0.55 at current AGC implementation), or
 | |
| 	// the center will sound too narrow. */
 | |
| 	c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
 | |
| 	c_agc_cfk = c_gain * _cf[k];
 | |
| 	_lf[k] -= c_agc_cfk;
 | |
| 	_rf[k] -= c_agc_cfk;
 | |
| 	_cf[k] += c_agc_cfk + c_agc_cfk;
 | |
| }
 | |
| 
 | |
| void DPL2Decode(float *samples, int numsamples, float *out)
 | |
| {
 | |
| 	static const unsigned int FWRDURATION = 240; // FWR average duration (samples)
 | |
| 	static const int cfg_delay = 0;
 | |
| 	static const unsigned int fmt_freq = 48000;
 | |
| 	static const unsigned int fmt_nchannels = 2; // input channels
 | |
| 
 | |
| 	int cur = 0;
 | |
| 
 | |
| 	if (olddelay != cfg_delay || oldfreq != fmt_freq)
 | |
| 	{
 | |
| 		Done();
 | |
| 		olddelay = cfg_delay;
 | |
| 		oldfreq = fmt_freq;
 | |
| 		dlbuflen = std::max(FWRDURATION, (fmt_freq * cfg_delay / 1000)); //+(len7000-1);
 | |
| 		cyc_pos = dlbuflen - 1;
 | |
| 		fwrbuf_l.resize(dlbuflen);
 | |
| 		fwrbuf_r.resize(dlbuflen);
 | |
| 		lf.resize(dlbuflen);
 | |
| 		rf.resize(dlbuflen);
 | |
| 		lr.resize(dlbuflen);
 | |
| 		rr.resize(dlbuflen);
 | |
| 		cf.resize(dlbuflen);
 | |
| 		cr.resize(dlbuflen);
 | |
| 		filter_coefs_lfe = CalculateCoefficients125HzLowpass(fmt_freq);
 | |
| 		lfe_pos = 0;
 | |
| 		memset(LFE_buf, 0, sizeof(LFE_buf));
 | |
| 	}
 | |
| 
 | |
| 	float *in = samples; // Input audio data
 | |
| 	float *end = in + numsamples * fmt_nchannels; // Loop end
 | |
| 
 | |
| 	while (in < end)
 | |
| 	{
 | |
| 		const int k = cyc_pos;
 | |
| 
 | |
| 		const int fwr_pos = (k + FWRDURATION) % dlbuflen;
 | |
| 		/* Update the full wave rectified total amplitude */
 | |
| 		/* Input matrix decoder */
 | |
| 		l_fwr += fabs(in[0]) - fabs(fwrbuf_l[fwr_pos]);
 | |
| 		r_fwr += fabs(in[1]) - fabs(fwrbuf_r[fwr_pos]);
 | |
| 		lpr_fwr += fabs(in[0] + in[1]) - fabs(fwrbuf_l[fwr_pos] + fwrbuf_r[fwr_pos]);
 | |
| 		lmr_fwr += fabs(in[0] - in[1]) - fabs(fwrbuf_l[fwr_pos] - fwrbuf_r[fwr_pos]);
 | |
| 
 | |
| 		/* Matrix encoded 2 channel sources */
 | |
| 		fwrbuf_l[k] = in[0];
 | |
| 		fwrbuf_r[k] = in[1];
 | |
| 		MatrixDecode(in, k, 0, 1, true, dlbuflen,
 | |
| 			l_fwr, r_fwr,
 | |
| 			lpr_fwr, lmr_fwr,
 | |
| 			&adapt_l_gain, &adapt_r_gain,
 | |
| 			&adapt_lpr_gain, &adapt_lmr_gain,
 | |
| 			&lf[0], &rf[0], &lr[0], &rr[0], &cf[0]);
 | |
| 
 | |
| 		out[cur + 0] = lf[k];
 | |
| 		out[cur + 1] = rf[k];
 | |
| 		out[cur + 2] = cf[k];
 | |
| 		LFE_buf[lfe_pos] = (out[0] + out[1]) / 2;
 | |
| 		out[cur + 3] = FIRFilter(LFE_buf, lfe_pos, len125, len125, filter_coefs_lfe);
 | |
| 		lfe_pos++;
 | |
| 		if (lfe_pos == len125)
 | |
| 		{
 | |
| 			lfe_pos = 0;
 | |
| 		}
 | |
| 		out[cur + 4] = lr[k];
 | |
| 		out[cur + 5] = rr[k];
 | |
| 		// Next sample...
 | |
| 		in += 2;
 | |
| 		cur += 6;
 | |
| 		cyc_pos--;
 | |
| 		if (cyc_pos < 0)
 | |
| 		{
 | |
| 			cyc_pos += dlbuflen;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void DPL2Reset()
 | |
| {
 | |
| 	olddelay = -1;
 | |
| 	oldfreq = 0;
 | |
| 	filter_coefs_lfe = nullptr;
 | |
| }
 |