mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-25 17:39:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			947 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			947 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2010 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| // ---------------------------------------------------------------------------------------------
 | |
| // GC graphics pipeline
 | |
| // ---------------------------------------------------------------------------------------------
 | |
| // 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
 | |
| // The efb can be copied back into ram in two forms: as textures or as XFB.
 | |
| // The XFB is the region in RAM that the VI chip scans out to the television.
 | |
| // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
 | |
| // Next frame, that one is scanned out and the other one gets the copy. = double buffering.
 | |
| // ---------------------------------------------------------------------------------------------
 | |
| 
 | |
| #include "VideoCommon/RenderBase.h"
 | |
| 
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <memory>
 | |
| #include <mutex>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| 
 | |
| #include "Common/Assert.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/Event.h"
 | |
| #include "Common/FileUtil.h"
 | |
| #include "Common/Flag.h"
 | |
| #include "Common/Logging/Log.h"
 | |
| #include "Common/MsgHandler.h"
 | |
| #include "Common/Profiler.h"
 | |
| #include "Common/StringUtil.h"
 | |
| #include "Common/Thread.h"
 | |
| #include "Common/Timer.h"
 | |
| 
 | |
| #include "Core/ConfigManager.h"
 | |
| #include "Core/Core.h"
 | |
| #include "Core/CoreTiming.h"
 | |
| #include "Core/FifoPlayer/FifoRecorder.h"
 | |
| #include "Core/HW/VideoInterface.h"
 | |
| #include "Core/Host.h"
 | |
| #include "Core/Movie.h"
 | |
| 
 | |
| #include "VideoCommon/AVIDump.h"
 | |
| #include "VideoCommon/BPMemory.h"
 | |
| #include "VideoCommon/CPMemory.h"
 | |
| #include "VideoCommon/CommandProcessor.h"
 | |
| #include "VideoCommon/Debugger.h"
 | |
| #include "VideoCommon/FPSCounter.h"
 | |
| #include "VideoCommon/FramebufferManagerBase.h"
 | |
| #include "VideoCommon/ImageWrite.h"
 | |
| #include "VideoCommon/OnScreenDisplay.h"
 | |
| #include "VideoCommon/PixelShaderManager.h"
 | |
| #include "VideoCommon/PostProcessing.h"
 | |
| #include "VideoCommon/Statistics.h"
 | |
| #include "VideoCommon/TextureCacheBase.h"
 | |
| #include "VideoCommon/TextureDecoder.h"
 | |
| #include "VideoCommon/VideoConfig.h"
 | |
| #include "VideoCommon/XFMemory.h"
 | |
| 
 | |
| // TODO: Move these out of here.
 | |
| int frameCount;
 | |
| int OSDChoice;
 | |
| static int OSDTime;
 | |
| 
 | |
| std::unique_ptr<Renderer> g_renderer;
 | |
| 
 | |
| // The maximum depth that is written to the depth buffer should never exceed this value.
 | |
| // This is necessary because we use a 2^24 divisor for all our depth values to prevent
 | |
| // floating-point round-trip errors. However the console GPU doesn't ever write a value
 | |
| // to the depth buffer that exceeds 2^24 - 1.
 | |
| const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
 | |
| 
 | |
| static float AspectToWidescreen(float aspect)
 | |
| {
 | |
|   return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
 | |
| }
 | |
| 
 | |
| Renderer::Renderer(int backbuffer_width, int backbuffer_height)
 | |
|     : m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height),
 | |
|       m_last_efb_scale(g_ActiveConfig.iEFBScale)
 | |
| {
 | |
|   FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
 | |
|   FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);
 | |
| 
 | |
|   UpdateActiveConfig();
 | |
|   UpdateDrawRectangle();
 | |
|   CalculateTargetSize();
 | |
| 
 | |
|   OSDChoice = 0;
 | |
|   OSDTime = 0;
 | |
| }
 | |
| 
 | |
| Renderer::~Renderer()
 | |
| {
 | |
|   ShutdownFrameDumping();
 | |
|   if (m_frame_dump_thread.joinable())
 | |
|     m_frame_dump_thread.join();
 | |
| }
 | |
| 
 | |
| void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
 | |
|                            float Gamma)
 | |
| {
 | |
|   CheckFifoRecording();
 | |
| 
 | |
|   if (!fbStride || !fbHeight)
 | |
|     return;
 | |
| 
 | |
|   m_xfb_written = true;
 | |
| 
 | |
|   if (g_ActiveConfig.bUseXFB)
 | |
|   {
 | |
|     FramebufferManagerBase::CopyToXFB(xfbAddr, fbStride, fbHeight, sourceRc, Gamma);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // The timing is not predictable here. So try to use the XFB path to dump frames.
 | |
|     u64 ticks = CoreTiming::GetTicks();
 | |
| 
 | |
|     // below div two to convert from bytes to pixels - it expects width, not stride
 | |
|     Swap(xfbAddr, fbStride / 2, fbStride / 2, fbHeight, sourceRc, ticks, Gamma);
 | |
|   }
 | |
| }
 | |
| 
 | |
| int Renderer::EFBToScaledX(int x)
 | |
| {
 | |
|   switch (g_ActiveConfig.iEFBScale)
 | |
|   {
 | |
|   case SCALE_AUTO:  // fractional
 | |
|     return FramebufferManagerBase::ScaleToVirtualXfbWidth(x, m_target_rectangle);
 | |
| 
 | |
|   default:
 | |
|     return x * (int)m_efb_scale_numeratorX / (int)m_efb_scale_denominatorX;
 | |
|   };
 | |
| }
 | |
| 
 | |
| int Renderer::EFBToScaledY(int y)
 | |
| {
 | |
|   switch (g_ActiveConfig.iEFBScale)
 | |
|   {
 | |
|   case SCALE_AUTO:  // fractional
 | |
|     return FramebufferManagerBase::ScaleToVirtualXfbHeight(y, m_target_rectangle);
 | |
| 
 | |
|   default:
 | |
|     return y * (int)m_efb_scale_numeratorY / (int)m_efb_scale_denominatorY;
 | |
|   };
 | |
| }
 | |
| 
 | |
| void Renderer::CalculateTargetScale(int x, int y, int* scaledX, int* scaledY)
 | |
| {
 | |
|   if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL)
 | |
|   {
 | |
|     *scaledX = x;
 | |
|     *scaledY = y;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     *scaledX = x * (int)m_efb_scale_numeratorX / (int)m_efb_scale_denominatorX;
 | |
|     *scaledY = y * (int)m_efb_scale_numeratorY / (int)m_efb_scale_denominatorY;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // return true if target size changed
 | |
| bool Renderer::CalculateTargetSize()
 | |
| {
 | |
|   int newEFBWidth, newEFBHeight;
 | |
|   newEFBWidth = newEFBHeight = 0;
 | |
| 
 | |
|   m_last_efb_scale = g_ActiveConfig.iEFBScale;
 | |
| 
 | |
|   // TODO: Ugly. Clean up
 | |
|   switch (m_last_efb_scale)
 | |
|   {
 | |
|   case SCALE_AUTO:
 | |
|   case SCALE_AUTO_INTEGRAL:
 | |
|     newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH, m_target_rectangle);
 | |
|     newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT, m_target_rectangle);
 | |
| 
 | |
|     if (m_last_efb_scale == SCALE_AUTO_INTEGRAL)
 | |
|     {
 | |
|       m_efb_scale_numeratorX = m_efb_scale_numeratorY =
 | |
|           std::max((newEFBWidth - 1) / EFB_WIDTH + 1, (newEFBHeight - 1) / EFB_HEIGHT + 1);
 | |
|       m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
 | |
|       newEFBWidth = EFBToScaledX(EFB_WIDTH);
 | |
|       newEFBHeight = EFBToScaledY(EFB_HEIGHT);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       m_efb_scale_numeratorX = newEFBWidth;
 | |
|       m_efb_scale_denominatorX = EFB_WIDTH;
 | |
|       m_efb_scale_numeratorY = newEFBHeight;
 | |
|       m_efb_scale_denominatorY = EFB_HEIGHT;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case SCALE_1X:
 | |
|     m_efb_scale_numeratorX = m_efb_scale_numeratorY = 1;
 | |
|     m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
 | |
|     break;
 | |
| 
 | |
|   case SCALE_1_5X:
 | |
|     m_efb_scale_numeratorX = m_efb_scale_numeratorY = 3;
 | |
|     m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2;
 | |
|     break;
 | |
| 
 | |
|   case SCALE_2X:
 | |
|     m_efb_scale_numeratorX = m_efb_scale_numeratorY = 2;
 | |
|     m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
 | |
|     break;
 | |
| 
 | |
|   case SCALE_2_5X:
 | |
|     m_efb_scale_numeratorX = m_efb_scale_numeratorY = 5;
 | |
|     m_efb_scale_denominatorX = m_efb_scale_denominatorY = 2;
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     m_efb_scale_numeratorX = m_efb_scale_numeratorY = m_last_efb_scale - 3;
 | |
|     m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
 | |
| 
 | |
|     const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize;
 | |
|     if (max_size < EFB_WIDTH * m_efb_scale_numeratorX / m_efb_scale_denominatorX)
 | |
|     {
 | |
|       m_efb_scale_numeratorX = m_efb_scale_numeratorY = (max_size / EFB_WIDTH);
 | |
|       m_efb_scale_denominatorX = m_efb_scale_denominatorY = 1;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   if (m_last_efb_scale > SCALE_AUTO_INTEGRAL)
 | |
|     CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, &newEFBWidth, &newEFBHeight);
 | |
| 
 | |
|   if (newEFBWidth != m_target_width || newEFBHeight != m_target_height)
 | |
|   {
 | |
|     m_target_width = newEFBWidth;
 | |
|     m_target_height = newEFBHeight;
 | |
|     PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1));
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Renderer::ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc,
 | |
|                                       TargetRectangle& rightRc)
 | |
| {
 | |
|   // Resize target to half its original size
 | |
|   TargetRectangle drawRc = rc;
 | |
|   if (g_ActiveConfig.iStereoMode == STEREO_TAB)
 | |
|   {
 | |
|     // The height may be negative due to flipped rectangles
 | |
|     int height = rc.bottom - rc.top;
 | |
|     drawRc.top += height / 4;
 | |
|     drawRc.bottom -= height / 4;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     int width = rc.right - rc.left;
 | |
|     drawRc.left += width / 4;
 | |
|     drawRc.right -= width / 4;
 | |
|   }
 | |
| 
 | |
|   // Create two target rectangle offset to the sides of the backbuffer
 | |
|   leftRc = drawRc, rightRc = drawRc;
 | |
|   if (g_ActiveConfig.iStereoMode == STEREO_TAB)
 | |
|   {
 | |
|     leftRc.top -= m_backbuffer_height / 4;
 | |
|     leftRc.bottom -= m_backbuffer_height / 4;
 | |
|     rightRc.top += m_backbuffer_height / 4;
 | |
|     rightRc.bottom += m_backbuffer_height / 4;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     leftRc.left -= m_backbuffer_width / 4;
 | |
|     leftRc.right -= m_backbuffer_width / 4;
 | |
|     rightRc.left += m_backbuffer_width / 4;
 | |
|     rightRc.right += m_backbuffer_width / 4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::SaveScreenshot(const std::string& filename, bool wait_for_completion)
 | |
| {
 | |
|   // We must not hold the lock while waiting for the screenshot to complete.
 | |
|   {
 | |
|     std::lock_guard<std::mutex> lk(m_screenshot_lock);
 | |
|     m_screenshot_name = filename;
 | |
|     m_screenshot_request.Set();
 | |
|   }
 | |
| 
 | |
|   if (wait_for_completion)
 | |
|   {
 | |
|     // This is currently only used by Android, and it was using a wait time of 2 seconds.
 | |
|     m_screenshot_completed.WaitFor(std::chrono::seconds(2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Create On-Screen-Messages
 | |
| void Renderer::DrawDebugText()
 | |
| {
 | |
|   std::string final_yellow, final_cyan;
 | |
| 
 | |
|   if (g_ActiveConfig.bShowFPS || SConfig::GetInstance().m_ShowFrameCount)
 | |
|   {
 | |
|     if (g_ActiveConfig.bShowFPS)
 | |
|       final_cyan += StringFromFormat("FPS: %u", g_renderer->m_fps_counter.GetFPS());
 | |
| 
 | |
|     if (g_ActiveConfig.bShowFPS && SConfig::GetInstance().m_ShowFrameCount)
 | |
|       final_cyan += " - ";
 | |
|     if (SConfig::GetInstance().m_ShowFrameCount)
 | |
|     {
 | |
|       final_cyan += StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame());
 | |
|       if (Movie::IsPlayingInput())
 | |
|         final_cyan += StringFromFormat("\nInput: %" PRIu64 " / %" PRIu64,
 | |
|                                        Movie::GetCurrentInputCount(), Movie::GetTotalInputCount());
 | |
|     }
 | |
| 
 | |
|     final_cyan += "\n";
 | |
|     final_yellow += "\n";
 | |
|   }
 | |
| 
 | |
|   if (SConfig::GetInstance().m_ShowLag)
 | |
|   {
 | |
|     final_cyan += StringFromFormat("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount());
 | |
|     final_yellow += "\n";
 | |
|   }
 | |
| 
 | |
|   if (SConfig::GetInstance().m_ShowInputDisplay)
 | |
|   {
 | |
|     final_cyan += Movie::GetInputDisplay();
 | |
|     final_yellow += "\n";
 | |
|   }
 | |
| 
 | |
|   if (SConfig::GetInstance().m_ShowRTC)
 | |
|   {
 | |
|     final_cyan += Movie::GetRTCDisplay();
 | |
|     final_yellow += "\n";
 | |
|   }
 | |
| 
 | |
|   // OSD Menu messages
 | |
|   if (OSDChoice > 0)
 | |
|   {
 | |
|     OSDTime = Common::Timer::GetTimeMs() + 3000;
 | |
|     OSDChoice = -OSDChoice;
 | |
|   }
 | |
| 
 | |
|   if ((u32)OSDTime > Common::Timer::GetTimeMs())
 | |
|   {
 | |
|     std::string res_text;
 | |
|     switch (g_ActiveConfig.iEFBScale)
 | |
|     {
 | |
|     case SCALE_AUTO:
 | |
|       res_text = "Auto (fractional)";
 | |
|       break;
 | |
|     case SCALE_AUTO_INTEGRAL:
 | |
|       res_text = "Auto (integral)";
 | |
|       break;
 | |
|     case SCALE_1X:
 | |
|       res_text = "Native";
 | |
|       break;
 | |
|     case SCALE_1_5X:
 | |
|       res_text = "1.5x";
 | |
|       break;
 | |
|     case SCALE_2X:
 | |
|       res_text = "2x";
 | |
|       break;
 | |
|     case SCALE_2_5X:
 | |
|       res_text = "2.5x";
 | |
|       break;
 | |
|     default:
 | |
|       res_text = StringFromFormat("%dx", g_ActiveConfig.iEFBScale - 3);
 | |
|       break;
 | |
|     }
 | |
|     const char* ar_text = "";
 | |
|     switch (g_ActiveConfig.iAspectRatio)
 | |
|     {
 | |
|     case ASPECT_AUTO:
 | |
|       ar_text = "Auto";
 | |
|       break;
 | |
|     case ASPECT_STRETCH:
 | |
|       ar_text = "Stretch";
 | |
|       break;
 | |
|     case ASPECT_ANALOG:
 | |
|       ar_text = "Force 4:3";
 | |
|       break;
 | |
|     case ASPECT_ANALOG_WIDE:
 | |
|       ar_text = "Force 16:9";
 | |
|     }
 | |
| 
 | |
|     const char* const efbcopy_text = g_ActiveConfig.bSkipEFBCopyToRam ? "to Texture" : "to RAM";
 | |
| 
 | |
|     // The rows
 | |
|     const std::string lines[] = {
 | |
|         std::string("Internal Resolution: ") + res_text,
 | |
|         std::string("Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""),
 | |
|         std::string("Copy EFB: ") + efbcopy_text,
 | |
|         std::string("Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"),
 | |
|         SConfig::GetInstance().m_EmulationSpeed <= 0 ?
 | |
|             "Speed Limit: Unlimited" :
 | |
|             StringFromFormat("Speed Limit: %li%%",
 | |
|                              std::lround(SConfig::GetInstance().m_EmulationSpeed * 100.f)),
 | |
|     };
 | |
| 
 | |
|     enum
 | |
|     {
 | |
|       lines_count = sizeof(lines) / sizeof(*lines)
 | |
|     };
 | |
| 
 | |
|     // The latest changed setting in yellow
 | |
|     for (int i = 0; i != lines_count; ++i)
 | |
|     {
 | |
|       if (OSDChoice == -i - 1)
 | |
|         final_yellow += lines[i];
 | |
|       final_yellow += '\n';
 | |
|     }
 | |
| 
 | |
|     // The other settings in cyan
 | |
|     for (int i = 0; i != lines_count; ++i)
 | |
|     {
 | |
|       if (OSDChoice != -i - 1)
 | |
|         final_cyan += lines[i];
 | |
|       final_cyan += '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   final_cyan += Common::Profiler::ToString();
 | |
| 
 | |
|   if (g_ActiveConfig.bOverlayStats)
 | |
|     final_cyan += Statistics::ToString();
 | |
| 
 | |
|   if (g_ActiveConfig.bOverlayProjStats)
 | |
|     final_cyan += Statistics::ToStringProj();
 | |
| 
 | |
|   // and then the text
 | |
|   g_renderer->RenderText(final_cyan, 20, 20, 0xFF00FFFF);
 | |
|   g_renderer->RenderText(final_yellow, 20, 20, 0xFFFFFF00);
 | |
| }
 | |
| 
 | |
| float Renderer::CalculateDrawAspectRatio(int target_width, int target_height)
 | |
| {
 | |
|   // The dimensions are the sizes that are used to create the EFB/backbuffer textures, so
 | |
|   // they should always be greater than zero.
 | |
|   _assert_(target_width > 0 && target_height > 0);
 | |
|   if (g_ActiveConfig.iAspectRatio == ASPECT_STRETCH)
 | |
|   {
 | |
|     // If stretch is enabled, we prefer the aspect ratio of the window.
 | |
|     return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
 | |
|            (static_cast<float>(m_backbuffer_width) / static_cast<float>(m_backbuffer_height));
 | |
|   }
 | |
| 
 | |
|   // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
 | |
|   if (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
 | |
|       (g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide))
 | |
|   {
 | |
|     return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
 | |
|            AspectToWidescreen(VideoInterface::GetAspectRatio());
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     return (static_cast<float>(target_width) / static_cast<float>(target_height)) /
 | |
|            VideoInterface::GetAspectRatio();
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::tuple<float, float> Renderer::ScaleToDisplayAspectRatio(const int width, const int height)
 | |
| {
 | |
|   // Scale either the width or height depending the content aspect ratio.
 | |
|   // This way we preserve as much resolution as possible when scaling.
 | |
|   float ratio = CalculateDrawAspectRatio(width, height);
 | |
|   if (ratio >= 1.0f)
 | |
|   {
 | |
|     // Preserve horizontal resolution, scale vertically.
 | |
|     return std::make_tuple(static_cast<float>(width), static_cast<float>(height) * ratio);
 | |
|   }
 | |
| 
 | |
|   // Preserve vertical resolution, scale horizontally.
 | |
|   return std::make_tuple(static_cast<float>(width) / ratio, static_cast<float>(height));
 | |
| }
 | |
| 
 | |
| TargetRectangle Renderer::CalculateFrameDumpDrawRectangle()
 | |
| {
 | |
|   // No point including any borders in the frame dump image, since they'd have to be cropped anyway.
 | |
|   TargetRectangle rc;
 | |
|   rc.left = 0;
 | |
|   rc.top = 0;
 | |
| 
 | |
|   // If full-resolution frame dumping is disabled, just use the window draw rectangle.
 | |
|   // Also do this if RealXFB is enabled, since the image has been downscaled for the XFB copy
 | |
|   // anyway, and there's no point writing an upscaled frame with no filtering.
 | |
|   if (!g_ActiveConfig.bInternalResolutionFrameDumps || g_ActiveConfig.RealXFBEnabled())
 | |
|   {
 | |
|     // But still remove the borders, since the caller expects this.
 | |
|     rc.right = m_target_rectangle.GetWidth();
 | |
|     rc.bottom = m_target_rectangle.GetHeight();
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   // Grab the dimensions of the EFB textures, we scale either of these depending on the ratio.
 | |
|   u32 efb_width, efb_height;
 | |
|   std::tie(efb_width, efb_height) = g_framebuffer_manager->GetTargetSize();
 | |
| 
 | |
|   float draw_width, draw_height;
 | |
|   std::tie(draw_width, draw_height) = ScaleToDisplayAspectRatio(efb_width, efb_height);
 | |
| 
 | |
|   rc.right = static_cast<int>(std::ceil(draw_width));
 | |
|   rc.bottom = static_cast<int>(std::ceil(draw_height));
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| void Renderer::UpdateDrawRectangle()
 | |
| {
 | |
|   float FloatGLWidth = static_cast<float>(m_backbuffer_width);
 | |
|   float FloatGLHeight = static_cast<float>(m_backbuffer_height);
 | |
|   float FloatXOffset = 0;
 | |
|   float FloatYOffset = 0;
 | |
| 
 | |
|   // The rendering window size
 | |
|   const float WinWidth = FloatGLWidth;
 | |
|   const float WinHeight = FloatGLHeight;
 | |
| 
 | |
|   // Update aspect ratio hack values
 | |
|   // Won't take effect until next frame
 | |
|   // Don't know if there is a better place for this code so there isn't a 1 frame delay
 | |
|   if (g_ActiveConfig.bWidescreenHack)
 | |
|   {
 | |
|     float source_aspect = VideoInterface::GetAspectRatio();
 | |
|     if (Core::g_aspect_wide)
 | |
|       source_aspect = AspectToWidescreen(source_aspect);
 | |
|     float target_aspect;
 | |
| 
 | |
|     switch (g_ActiveConfig.iAspectRatio)
 | |
|     {
 | |
|     case ASPECT_STRETCH:
 | |
|       target_aspect = WinWidth / WinHeight;
 | |
|       break;
 | |
|     case ASPECT_ANALOG:
 | |
|       target_aspect = VideoInterface::GetAspectRatio();
 | |
|       break;
 | |
|     case ASPECT_ANALOG_WIDE:
 | |
|       target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio());
 | |
|       break;
 | |
|     default:
 | |
|       // ASPECT_AUTO
 | |
|       target_aspect = source_aspect;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     float adjust = source_aspect / target_aspect;
 | |
|     if (adjust > 1)
 | |
|     {
 | |
|       // Vert+
 | |
|       g_Config.fAspectRatioHackW = 1;
 | |
|       g_Config.fAspectRatioHackH = 1 / adjust;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // Hor+
 | |
|       g_Config.fAspectRatioHackW = adjust;
 | |
|       g_Config.fAspectRatioHackH = 1;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // Hack is disabled
 | |
|     g_Config.fAspectRatioHackW = 1;
 | |
|     g_Config.fAspectRatioHackH = 1;
 | |
|   }
 | |
| 
 | |
|   // Check for force-settings and override.
 | |
| 
 | |
|   // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
 | |
|   float Ratio = CalculateDrawAspectRatio(m_backbuffer_width, m_backbuffer_height);
 | |
|   if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
 | |
|   {
 | |
|     if (Ratio >= 0.995f && Ratio <= 1.005f)
 | |
|     {
 | |
|       // If we're very close already, don't scale.
 | |
|       Ratio = 1.0f;
 | |
|     }
 | |
|     else if (Ratio > 1.0f)
 | |
|     {
 | |
|       // Scale down and center in the X direction.
 | |
|       FloatGLWidth /= Ratio;
 | |
|       FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f;
 | |
|     }
 | |
|     // The window is too high, we have to limit the height
 | |
|     else
 | |
|     {
 | |
|       // Scale down and center in the Y direction.
 | |
|       FloatGLHeight *= Ratio;
 | |
|       FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // -----------------------------------------------------------------------
 | |
|   // Crop the picture from Analog to 4:3 or from Analog (Wide) to 16:9.
 | |
|   // Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset
 | |
|   // ------------------
 | |
|   if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop)
 | |
|   {
 | |
|     Ratio = (4.0f / 3.0f) / VideoInterface::GetAspectRatio();
 | |
|     if (Ratio <= 1.0f)
 | |
|     {
 | |
|       Ratio = 1.0f / Ratio;
 | |
|     }
 | |
|     // The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is
 | |
|     // adjusted)
 | |
|     float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth;
 | |
|     float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight;
 | |
|     // The new width and height
 | |
|     FloatGLWidth = FloatGLWidth * Ratio;
 | |
|     FloatGLHeight = FloatGLHeight * Ratio;
 | |
|     // Adjust the X and Y offset
 | |
|     FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f);
 | |
|     FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f);
 | |
|   }
 | |
| 
 | |
|   int XOffset = (int)(FloatXOffset + 0.5f);
 | |
|   int YOffset = (int)(FloatYOffset + 0.5f);
 | |
|   int iWhidth = (int)ceil(FloatGLWidth);
 | |
|   int iHeight = (int)ceil(FloatGLHeight);
 | |
|   iWhidth -=
 | |
|       iWhidth % 4;  // ensure divisibility by 4 to make it compatible with all the video encoders
 | |
|   iHeight -= iHeight % 4;
 | |
| 
 | |
|   m_target_rectangle.left = XOffset;
 | |
|   m_target_rectangle.top = YOffset;
 | |
|   m_target_rectangle.right = XOffset + iWhidth;
 | |
|   m_target_rectangle.bottom = YOffset + iHeight;
 | |
| }
 | |
| 
 | |
| void Renderer::SetWindowSize(int width, int height)
 | |
| {
 | |
|   width = std::max(width, 1);
 | |
|   height = std::max(height, 1);
 | |
| 
 | |
|   // Scale the window size by the EFB scale.
 | |
|   CalculateTargetScale(width, height, &width, &height);
 | |
| 
 | |
|   float scaled_width, scaled_height;
 | |
|   std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height);
 | |
| 
 | |
|   if (g_ActiveConfig.bCrop)
 | |
|   {
 | |
|     // Force 4:3 or 16:9 by cropping the image.
 | |
|     float current_aspect = scaled_width / scaled_height;
 | |
|     float expected_aspect =
 | |
|         (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
 | |
|          (g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide)) ?
 | |
|             (16.0f / 9.0f) :
 | |
|             (4.0f / 3.0f);
 | |
|     if (current_aspect > expected_aspect)
 | |
|     {
 | |
|       // keep height, crop width
 | |
|       scaled_width = scaled_height * expected_aspect;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // keep width, crop height
 | |
|       scaled_height = scaled_width / expected_aspect;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   width = static_cast<int>(std::ceil(scaled_width));
 | |
|   height = static_cast<int>(std::ceil(scaled_height));
 | |
| 
 | |
|   // UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video
 | |
|   // encoders, so do that here too to match it
 | |
|   width -= width % 4;
 | |
|   height -= height % 4;
 | |
| 
 | |
|   // Track the last values of width/height to avoid sending a window resize event every frame.
 | |
|   if (width != m_last_window_request_width || height != m_last_window_request_height)
 | |
|   {
 | |
|     m_last_window_request_width = width;
 | |
|     m_last_window_request_height = height;
 | |
|     Host_RequestRenderWindowSize(width, height);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::CheckFifoRecording()
 | |
| {
 | |
|   bool wasRecording = g_bRecordFifoData;
 | |
|   g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
 | |
| 
 | |
|   if (g_bRecordFifoData)
 | |
|   {
 | |
|     if (!wasRecording)
 | |
|     {
 | |
|       RecordVideoMemory();
 | |
|     }
 | |
| 
 | |
|     FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase,
 | |
|                                          CommandProcessor::fifo.CPEnd);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::RecordVideoMemory()
 | |
| {
 | |
|   const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
 | |
|   u32 cpmem[256] = {};
 | |
|   // The FIFO recording format splits XF memory into xfmem and xfregs; follow
 | |
|   // that split here.
 | |
|   const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
 | |
|   const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
 | |
|   u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
 | |
| 
 | |
|   FillCPMemoryArray(cpmem);
 | |
| 
 | |
|   FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size,
 | |
|                                              texMem);
 | |
| }
 | |
| 
 | |
| void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
 | |
|                     u64 ticks, float Gamma)
 | |
| {
 | |
|   // TODO: merge more generic parts into VideoCommon
 | |
|   g_renderer->SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, ticks, Gamma);
 | |
| 
 | |
|   if (m_xfb_written)
 | |
|     g_renderer->m_fps_counter.Update();
 | |
| 
 | |
|   frameCount++;
 | |
|   GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
 | |
| 
 | |
|   // Begin new frame
 | |
|   // Set default viewport and scissor, for the clear to work correctly
 | |
|   // New frame
 | |
|   stats.ResetFrame();
 | |
| 
 | |
|   Core::Callback_VideoCopiedToXFB(m_xfb_written ||
 | |
|                                   (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
 | |
|   m_xfb_written = false;
 | |
| }
 | |
| 
 | |
| bool Renderer::IsFrameDumping()
 | |
| {
 | |
|   if (m_screenshot_request.IsSet())
 | |
|     return true;
 | |
| 
 | |
| #if defined(HAVE_LIBAV) || defined(_WIN32)
 | |
|   if (SConfig::GetInstance().m_DumpFrames)
 | |
|     return true;
 | |
| #endif
 | |
| 
 | |
|   ShutdownFrameDumping();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Renderer::ShutdownFrameDumping()
 | |
| {
 | |
|   if (!m_frame_dump_thread_running.IsSet())
 | |
|     return;
 | |
| 
 | |
|   FinishFrameData();
 | |
|   m_frame_dump_thread_running.Clear();
 | |
|   m_frame_dump_start.Set();
 | |
| }
 | |
| 
 | |
| void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state,
 | |
|                              bool swap_upside_down)
 | |
| {
 | |
|   FinishFrameData();
 | |
| 
 | |
|   m_frame_dump_config = FrameDumpConfig{data, w, h, stride, swap_upside_down, state};
 | |
| 
 | |
|   if (!m_frame_dump_thread_running.IsSet())
 | |
|   {
 | |
|     if (m_frame_dump_thread.joinable())
 | |
|       m_frame_dump_thread.join();
 | |
|     m_frame_dump_thread_running.Set();
 | |
|     m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this);
 | |
|   }
 | |
| 
 | |
|   m_frame_dump_start.Set();
 | |
|   m_frame_dump_frame_running = true;
 | |
| }
 | |
| 
 | |
| void Renderer::FinishFrameData()
 | |
| {
 | |
|   if (!m_frame_dump_frame_running)
 | |
|     return;
 | |
| 
 | |
|   m_frame_dump_done.Wait();
 | |
|   m_frame_dump_frame_running = false;
 | |
| }
 | |
| 
 | |
| void Renderer::RunFrameDumps()
 | |
| {
 | |
|   Common::SetCurrentThreadName("FrameDumping");
 | |
|   bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages;
 | |
|   bool frame_dump_started = false;
 | |
| 
 | |
| // If Dolphin was compiled without libav, we only support dumping to images.
 | |
| #if !defined(HAVE_LIBAV) && !defined(_WIN32)
 | |
|   if (dump_to_avi)
 | |
|   {
 | |
|     WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. "
 | |
|                     "Frame dump will be saved as images instead.");
 | |
|     dump_to_avi = false;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   while (true)
 | |
|   {
 | |
|     m_frame_dump_start.Wait();
 | |
|     if (!m_frame_dump_thread_running.IsSet())
 | |
|       break;
 | |
| 
 | |
|     auto config = m_frame_dump_config;
 | |
| 
 | |
|     if (config.upside_down)
 | |
|     {
 | |
|       config.data = config.data + (config.height - 1) * config.stride;
 | |
|       config.stride = -config.stride;
 | |
|     }
 | |
| 
 | |
|     // Save screenshot
 | |
|     if (m_screenshot_request.TestAndClear())
 | |
|     {
 | |
|       std::lock_guard<std::mutex> lk(m_screenshot_lock);
 | |
| 
 | |
|       if (TextureToPng(config.data, config.stride, m_screenshot_name, config.width, config.height,
 | |
|                        false))
 | |
|         OSD::AddMessage("Screenshot saved to " + m_screenshot_name);
 | |
| 
 | |
|       // Reset settings
 | |
|       m_screenshot_name.clear();
 | |
|       m_screenshot_completed.Set();
 | |
|     }
 | |
| 
 | |
|     if (SConfig::GetInstance().m_DumpFrames)
 | |
|     {
 | |
|       if (!frame_dump_started)
 | |
|       {
 | |
|         if (dump_to_avi)
 | |
|           frame_dump_started = StartFrameDumpToAVI(config);
 | |
|         else
 | |
|           frame_dump_started = StartFrameDumpToImage(config);
 | |
| 
 | |
|         // Stop frame dumping if we fail to start.
 | |
|         if (!frame_dump_started)
 | |
|           SConfig::GetInstance().m_DumpFrames = false;
 | |
|       }
 | |
| 
 | |
|       // If we failed to start frame dumping, don't write a frame.
 | |
|       if (frame_dump_started)
 | |
|       {
 | |
|         if (dump_to_avi)
 | |
|           DumpFrameToAVI(config);
 | |
|         else
 | |
|           DumpFrameToImage(config);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     m_frame_dump_done.Set();
 | |
|   }
 | |
| 
 | |
|   if (frame_dump_started)
 | |
|   {
 | |
|     // No additional cleanup is needed when dumping to images.
 | |
|     if (dump_to_avi)
 | |
|       StopFrameDumpToAVI();
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if defined(HAVE_LIBAV) || defined(_WIN32)
 | |
| 
 | |
| bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
 | |
| {
 | |
|   return AVIDump::Start(config.width, config.height);
 | |
| }
 | |
| 
 | |
| void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
 | |
| {
 | |
|   AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state);
 | |
| }
 | |
| 
 | |
| void Renderer::StopFrameDumpToAVI()
 | |
| {
 | |
|   AVIDump::Stop();
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config)
 | |
| {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Renderer::DumpFrameToAVI(const FrameDumpConfig& config)
 | |
| {
 | |
| }
 | |
| 
 | |
| void Renderer::StopFrameDumpToAVI()
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif  // defined(HAVE_LIBAV) || defined(WIN32)
 | |
| 
 | |
| std::string Renderer::GetFrameDumpNextImageFileName() const
 | |
| {
 | |
|   return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(),
 | |
|                           m_frame_dump_image_counter);
 | |
| }
 | |
| 
 | |
| bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config)
 | |
| {
 | |
|   m_frame_dump_image_counter = 1;
 | |
|   if (!SConfig::GetInstance().m_DumpFramesSilent)
 | |
|   {
 | |
|     // Only check for the presence of the first image to confirm overwriting.
 | |
|     // A previous run will always have at least one image, and it's safe to assume that if the user
 | |
|     // has allowed the first image to be overwritten, this will apply any remaining images as well.
 | |
|     std::string filename = GetFrameDumpNextImageFileName();
 | |
|     if (File::Exists(filename))
 | |
|     {
 | |
|       if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str()))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Renderer::DumpFrameToImage(const FrameDumpConfig& config)
 | |
| {
 | |
|   std::string filename = GetFrameDumpNextImageFileName();
 | |
|   TextureToPng(config.data, config.stride, filename, config.width, config.height, false);
 | |
|   m_frame_dump_image_counter++;
 | |
| }
 | |
| 
 | |
| bool Renderer::UseVertexDepthRange() const
 | |
| {
 | |
|   // We can't compute the depth range in the vertex shader if we don't support depth clamp.
 | |
|   if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
 | |
|     return false;
 | |
| 
 | |
|   // We need a full depth range if a ztexture is used.
 | |
|   if (bpmem.ztex2.type != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest)
 | |
|     return true;
 | |
| 
 | |
|   // If an inverted depth range is unsupported, we also need to check if the range is inverted.
 | |
|   if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f)
 | |
|     return true;
 | |
| 
 | |
|   // If an oversized depth range or a ztexture is used, we need to calculate the depth range
 | |
|   // in the vertex shader.
 | |
|   return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f;
 | |
| }
 |