mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-25 17:39:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1502 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1502 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2010 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstring>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| 
 | |
| #include "Common/Align.h"
 | |
| #include "Common/Assert.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/FileUtil.h"
 | |
| #include "Common/Hash.h"
 | |
| #include "Common/Logging/Log.h"
 | |
| #include "Common/MathUtil.h"
 | |
| #include "Common/MemoryUtil.h"
 | |
| #include "Common/StringUtil.h"
 | |
| 
 | |
| #include "Core/ConfigManager.h"
 | |
| #include "Core/FifoPlayer/FifoPlayer.h"
 | |
| #include "Core/FifoPlayer/FifoRecorder.h"
 | |
| #include "Core/HW/Memmap.h"
 | |
| 
 | |
| #include "VideoCommon/BPMemory.h"
 | |
| #include "VideoCommon/Debugger.h"
 | |
| #include "VideoCommon/FramebufferManagerBase.h"
 | |
| #include "VideoCommon/HiresTextures.h"
 | |
| #include "VideoCommon/RenderBase.h"
 | |
| #include "VideoCommon/SamplerCommon.h"
 | |
| #include "VideoCommon/Statistics.h"
 | |
| #include "VideoCommon/TextureCacheBase.h"
 | |
| #include "VideoCommon/TextureDecoder.h"
 | |
| #include "VideoCommon/VideoCommon.h"
 | |
| #include "VideoCommon/VideoConfig.h"
 | |
| 
 | |
| static const u64 TEXHASH_INVALID = 0;
 | |
| static const int TEXTURE_KILL_THRESHOLD =
 | |
|     64;  // Sonic the Fighters (inside Sonic Gems Collection) loops a 64 frames animation
 | |
| static const int TEXTURE_POOL_KILL_THRESHOLD = 3;
 | |
| static const int FRAMECOUNT_INVALID = 0;
 | |
| 
 | |
| std::unique_ptr<TextureCacheBase> g_texture_cache;
 | |
| 
 | |
| TextureCacheBase::TCacheEntryBase::~TCacheEntryBase()
 | |
| {
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::CheckTempSize(size_t required_size)
 | |
| {
 | |
|   if (required_size <= temp_size)
 | |
|     return;
 | |
| 
 | |
|   temp_size = required_size;
 | |
|   Common::FreeAlignedMemory(temp);
 | |
|   temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16));
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TextureCacheBase()
 | |
| {
 | |
|   SetBackupConfig(g_ActiveConfig);
 | |
| 
 | |
|   temp_size = 2048 * 2048 * 4;
 | |
|   temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16));
 | |
| 
 | |
|   TexDecoder_SetTexFmtOverlayOptions(backup_config.texfmt_overlay,
 | |
|                                      backup_config.texfmt_overlay_center);
 | |
| 
 | |
|   HiresTexture::Init();
 | |
| 
 | |
|   SetHash64Function();
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::Invalidate()
 | |
| {
 | |
|   UnbindTextures();
 | |
| 
 | |
|   for (auto& tex : textures_by_address)
 | |
|   {
 | |
|     delete tex.second;
 | |
|   }
 | |
|   textures_by_address.clear();
 | |
|   textures_by_hash.clear();
 | |
| 
 | |
|   for (auto& rt : texture_pool)
 | |
|   {
 | |
|     delete rt.second;
 | |
|   }
 | |
|   texture_pool.clear();
 | |
| }
 | |
| 
 | |
| TextureCacheBase::~TextureCacheBase()
 | |
| {
 | |
|   HiresTexture::Shutdown();
 | |
|   Invalidate();
 | |
|   Common::FreeAlignedMemory(temp);
 | |
|   temp = nullptr;
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::OnConfigChanged(VideoConfig& config)
 | |
| {
 | |
|   if (config.bHiresTextures != backup_config.hires_textures ||
 | |
|       config.bCacheHiresTextures != backup_config.cache_hires_textures)
 | |
|   {
 | |
|     HiresTexture::Update();
 | |
|   }
 | |
| 
 | |
|   // TODO: Invalidating texcache is really stupid in some of these cases
 | |
|   if (config.iSafeTextureCache_ColorSamples != backup_config.color_samples ||
 | |
|       config.bTexFmtOverlayEnable != backup_config.texfmt_overlay ||
 | |
|       config.bTexFmtOverlayCenter != backup_config.texfmt_overlay_center ||
 | |
|       config.bHiresTextures != backup_config.hires_textures)
 | |
|   {
 | |
|     Invalidate();
 | |
| 
 | |
|     TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable,
 | |
|                                        g_ActiveConfig.bTexFmtOverlayCenter);
 | |
|   }
 | |
| 
 | |
|   if ((config.iStereoMode > 0) != backup_config.stereo_3d ||
 | |
|       config.bStereoEFBMonoDepth != backup_config.efb_mono_depth)
 | |
|   {
 | |
|     g_texture_cache->DeleteShaders();
 | |
|     if (!g_texture_cache->CompileShaders())
 | |
|       PanicAlert("Failed to recompile one or more texture conversion shaders.");
 | |
|   }
 | |
| 
 | |
|   SetBackupConfig(config);
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::Cleanup(int _frameCount)
 | |
| {
 | |
|   TexAddrCache::iterator iter = textures_by_address.begin();
 | |
|   TexAddrCache::iterator tcend = textures_by_address.end();
 | |
|   while (iter != tcend)
 | |
|   {
 | |
|     if (iter->second->frameCount == FRAMECOUNT_INVALID)
 | |
|     {
 | |
|       iter->second->frameCount = _frameCount;
 | |
|       ++iter;
 | |
|     }
 | |
|     else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount)
 | |
|     {
 | |
|       if (iter->second->IsEfbCopy())
 | |
|       {
 | |
|         // Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB
 | |
|         // copies living on the
 | |
|         // host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for
 | |
|         // performance reasons
 | |
|         if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 &&
 | |
|             iter->second->hash != iter->second->CalculateHash())
 | |
|         {
 | |
|           iter = InvalidateTexture(iter);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           ++iter;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         iter = InvalidateTexture(iter);
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       ++iter;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TexPool::iterator iter2 = texture_pool.begin();
 | |
|   TexPool::iterator tcend2 = texture_pool.end();
 | |
|   while (iter2 != tcend2)
 | |
|   {
 | |
|     if (iter2->second->frameCount == FRAMECOUNT_INVALID)
 | |
|     {
 | |
|       iter2->second->frameCount = _frameCount;
 | |
|     }
 | |
|     if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second->frameCount)
 | |
|     {
 | |
|       delete iter2->second;
 | |
|       iter2 = texture_pool.erase(iter2);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       ++iter2;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool TextureCacheBase::TCacheEntryBase::OverlapsMemoryRange(u32 range_address, u32 range_size) const
 | |
| {
 | |
|   if (addr + size_in_bytes <= range_address)
 | |
|     return false;
 | |
| 
 | |
|   if (addr >= range_address + range_size)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::SetBackupConfig(const VideoConfig& config)
 | |
| {
 | |
|   backup_config.color_samples = config.iSafeTextureCache_ColorSamples;
 | |
|   backup_config.texfmt_overlay = config.bTexFmtOverlayEnable;
 | |
|   backup_config.texfmt_overlay_center = config.bTexFmtOverlayCenter;
 | |
|   backup_config.hires_textures = config.bHiresTextures;
 | |
|   backup_config.cache_hires_textures = config.bCacheHiresTextures;
 | |
|   backup_config.stereo_3d = config.iStereoMode > 0;
 | |
|   backup_config.efb_mono_depth = config.bStereoEFBMonoDepth;
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TCacheEntryBase* TextureCacheBase::ApplyPaletteToEntry(TCacheEntryBase* entry,
 | |
|                                                                          u8* palette, u32 tlutfmt)
 | |
| {
 | |
|   TCacheEntryConfig new_config = entry->config;
 | |
|   new_config.levels = 1;
 | |
|   new_config.rendertarget = true;
 | |
| 
 | |
|   TCacheEntryBase* decoded_entry = AllocateTexture(new_config);
 | |
|   if (!decoded_entry)
 | |
|     return nullptr;
 | |
| 
 | |
|   decoded_entry->SetGeneralParameters(entry->addr, entry->size_in_bytes, entry->format);
 | |
|   decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
 | |
|   decoded_entry->SetHashes(entry->base_hash, entry->hash);
 | |
|   decoded_entry->frameCount = FRAMECOUNT_INVALID;
 | |
|   decoded_entry->is_efb_copy = false;
 | |
| 
 | |
|   ConvertTexture(decoded_entry, entry, palette, static_cast<TlutFormat>(tlutfmt));
 | |
|   textures_by_address.emplace(entry->addr, decoded_entry);
 | |
| 
 | |
|   return decoded_entry;
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::ScaleTextureCacheEntryTo(TextureCacheBase::TCacheEntryBase** entry,
 | |
|                                                 u32 new_width, u32 new_height)
 | |
| {
 | |
|   if ((*entry)->config.width == new_width && (*entry)->config.height == new_height)
 | |
|   {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const u32 max = g_ActiveConfig.backend_info.MaxTextureSize;
 | |
|   if (max < new_width || max < new_height)
 | |
|   {
 | |
|     ERROR_LOG(VIDEO, "Texture too big, width = %d, height = %d", new_width, new_height);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   TextureCacheBase::TCacheEntryConfig newconfig;
 | |
|   newconfig.width = new_width;
 | |
|   newconfig.height = new_height;
 | |
|   newconfig.layers = (*entry)->config.layers;
 | |
|   newconfig.rendertarget = true;
 | |
| 
 | |
|   TCacheEntryBase* newentry = AllocateTexture(newconfig);
 | |
|   if (newentry)
 | |
|   {
 | |
|     newentry->SetGeneralParameters((*entry)->addr, (*entry)->size_in_bytes, (*entry)->format);
 | |
|     newentry->SetDimensions((*entry)->native_width, (*entry)->native_height, 1);
 | |
|     newentry->SetHashes((*entry)->base_hash, (*entry)->hash);
 | |
|     newentry->frameCount = frameCount;
 | |
|     newentry->is_efb_copy = (*entry)->is_efb_copy;
 | |
|     MathUtil::Rectangle<int> srcrect, dstrect;
 | |
|     srcrect.left = 0;
 | |
|     srcrect.top = 0;
 | |
|     srcrect.right = (*entry)->config.width;
 | |
|     srcrect.bottom = (*entry)->config.height;
 | |
|     dstrect.left = 0;
 | |
|     dstrect.top = 0;
 | |
|     dstrect.right = new_width;
 | |
|     dstrect.bottom = new_height;
 | |
|     newentry->CopyRectangleFromTexture(*entry, srcrect, dstrect);
 | |
| 
 | |
|     // Keep track of the pointer for textures_by_hash
 | |
|     if ((*entry)->textures_by_hash_iter != textures_by_hash.end())
 | |
|     {
 | |
|       newentry->textures_by_hash_iter = textures_by_hash.emplace((*entry)->hash, newentry);
 | |
|     }
 | |
| 
 | |
|     InvalidateTexture(GetTexCacheIter(*entry));
 | |
| 
 | |
|     *entry = newentry;
 | |
|     textures_by_address.emplace((*entry)->addr, *entry);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     ERROR_LOG(VIDEO, "Scaling failed");
 | |
|   }
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TCacheEntryBase*
 | |
| TextureCacheBase::DoPartialTextureUpdates(TCacheEntryBase* entry_to_update, u8* palette,
 | |
|                                           u32 tlutfmt)
 | |
| {
 | |
|   // If the flag may_have_overlapping_textures is cleared, there are no overlapping EFB copies,
 | |
|   // which aren't applied already. It is set for new textures, and for the affected range
 | |
|   // on each EFB copy.
 | |
|   if (!entry_to_update->may_have_overlapping_textures)
 | |
|     return entry_to_update;
 | |
|   entry_to_update->may_have_overlapping_textures = false;
 | |
| 
 | |
|   const bool isPaletteTexture =
 | |
|       (entry_to_update->format == GX_TF_C4 || entry_to_update->format == GX_TF_C8 ||
 | |
|        entry_to_update->format == GX_TF_C14X2 || entry_to_update->format >= 0x10000);
 | |
| 
 | |
|   // EFB copies are excluded from these updates, until there's an example where a game would
 | |
|   // benefit from updating. This would require more work to be done.
 | |
|   if (entry_to_update->IsEfbCopy())
 | |
|     return entry_to_update;
 | |
| 
 | |
|   u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format & 0xf);
 | |
|   u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format & 0xf);
 | |
|   u32 block_size = block_width * block_height *
 | |
|                    TexDecoder_GetTexelSizeInNibbles(entry_to_update->format & 0xf) / 2;
 | |
| 
 | |
|   u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width;
 | |
| 
 | |
|   auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes);
 | |
|   while (iter.first != iter.second)
 | |
|   {
 | |
|     TCacheEntryBase* entry = iter.first->second;
 | |
|     if (entry != entry_to_update && entry->IsEfbCopy() &&
 | |
|         entry->references.count(entry_to_update) == 0 &&
 | |
|         entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) &&
 | |
|         entry->memory_stride == numBlocksX * block_size)
 | |
|     {
 | |
|       if (entry->hash == entry->CalculateHash())
 | |
|       {
 | |
|         if (isPaletteTexture)
 | |
|         {
 | |
|           TCacheEntryBase* decoded_entry = ApplyPaletteToEntry(entry, palette, tlutfmt);
 | |
|           if (decoded_entry)
 | |
|           {
 | |
|             // Link the efb copy with the partially updated texture, so we won't apply this partial
 | |
|             // update again
 | |
|             entry->CreateReference(entry_to_update);
 | |
|             // Mark the texture update as used, as if it was loaded directly
 | |
|             entry->frameCount = FRAMECOUNT_INVALID;
 | |
|             entry = decoded_entry;
 | |
|           }
 | |
|           else
 | |
|           {
 | |
|             ++iter.first;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         u32 src_x, src_y, dst_x, dst_y;
 | |
| 
 | |
|         // Note for understanding the math:
 | |
|         // Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist
 | |
|         if (entry->addr >= entry_to_update->addr)
 | |
|         {
 | |
|           u32 block_offset = (entry->addr - entry_to_update->addr) / block_size;
 | |
|           u32 block_x = block_offset % numBlocksX;
 | |
|           u32 block_y = block_offset / numBlocksX;
 | |
|           src_x = 0;
 | |
|           src_y = 0;
 | |
|           dst_x = block_x * block_width;
 | |
|           dst_y = block_y * block_height;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           u32 block_offset = (entry_to_update->addr - entry->addr) / block_size;
 | |
|           u32 block_x = (~block_offset + 1) % numBlocksX;
 | |
|           u32 block_y = (block_offset + block_x) / numBlocksX;
 | |
|           src_x = 0;
 | |
|           src_y = block_y * block_height;
 | |
|           dst_x = block_x * block_width;
 | |
|           dst_y = 0;
 | |
|         }
 | |
| 
 | |
|         u32 copy_width =
 | |
|             std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x);
 | |
|         u32 copy_height =
 | |
|             std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y);
 | |
| 
 | |
|         // If one of the textures is scaled, scale both with the current efb scaling factor
 | |
|         if (entry_to_update->native_width != entry_to_update->config.width ||
 | |
|             entry_to_update->native_height != entry_to_update->config.height ||
 | |
|             entry->native_width != entry->config.width ||
 | |
|             entry->native_height != entry->config.height)
 | |
|         {
 | |
|           ScaleTextureCacheEntryTo(&entry_to_update,
 | |
|                                    g_renderer->EFBToScaledX(entry_to_update->native_width),
 | |
|                                    g_renderer->EFBToScaledY(entry_to_update->native_height));
 | |
|           ScaleTextureCacheEntryTo(&entry, g_renderer->EFBToScaledX(entry->native_width),
 | |
|                                    g_renderer->EFBToScaledY(entry->native_height));
 | |
| 
 | |
|           src_x = g_renderer->EFBToScaledX(src_x);
 | |
|           src_y = g_renderer->EFBToScaledY(src_y);
 | |
|           dst_x = g_renderer->EFBToScaledX(dst_x);
 | |
|           dst_y = g_renderer->EFBToScaledY(dst_y);
 | |
|           copy_width = g_renderer->EFBToScaledX(copy_width);
 | |
|           copy_height = g_renderer->EFBToScaledY(copy_height);
 | |
|         }
 | |
| 
 | |
|         MathUtil::Rectangle<int> srcrect, dstrect;
 | |
|         srcrect.left = src_x;
 | |
|         srcrect.top = src_y;
 | |
|         srcrect.right = (src_x + copy_width);
 | |
|         srcrect.bottom = (src_y + copy_height);
 | |
|         dstrect.left = dst_x;
 | |
|         dstrect.top = dst_y;
 | |
|         dstrect.right = (dst_x + copy_width);
 | |
|         dstrect.bottom = (dst_y + copy_height);
 | |
|         entry_to_update->CopyRectangleFromTexture(entry, srcrect, dstrect);
 | |
| 
 | |
|         if (isPaletteTexture)
 | |
|         {
 | |
|           // Remove the temporary converted texture, it won't be used anywhere else
 | |
|           // TODO: It would be nice to convert and copy in one step, but this code path isn't common
 | |
|           InvalidateTexture(GetTexCacheIter(entry));
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           // Link the two textures together, so we won't apply this partial update again
 | |
|           entry->CreateReference(entry_to_update);
 | |
|           // Mark the texture update as used, as if it was loaded directly
 | |
|           entry->frameCount = FRAMECOUNT_INVALID;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // If the hash does not match, this EFB copy will not be used for anything, so remove it
 | |
|         iter.first = InvalidateTexture(iter.first);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     ++iter.first;
 | |
|   }
 | |
|   return entry_to_update;
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::DumpTexture(TCacheEntryBase* entry, std::string basename, unsigned int level)
 | |
| {
 | |
|   std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().GetGameID();
 | |
| 
 | |
|   // make sure that the directory exists
 | |
|   if (!File::Exists(szDir) || !File::IsDirectory(szDir))
 | |
|     File::CreateDir(szDir);
 | |
| 
 | |
|   if (level > 0)
 | |
|   {
 | |
|     basename += StringFromFormat("_mip%i", level);
 | |
|   }
 | |
|   std::string filename = szDir + "/" + basename + ".png";
 | |
| 
 | |
|   if (!File::Exists(filename))
 | |
|     entry->Save(filename, level);
 | |
| }
 | |
| 
 | |
| static u32 CalculateLevelSize(u32 level_0_size, u32 level)
 | |
| {
 | |
|   return std::max(level_0_size >> level, 1u);
 | |
| }
 | |
| 
 | |
| // Used by TextureCacheBase::Load
 | |
| TextureCacheBase::TCacheEntryBase* TextureCacheBase::ReturnEntry(unsigned int stage,
 | |
|                                                                  TCacheEntryBase* entry)
 | |
| {
 | |
|   entry->frameCount = FRAMECOUNT_INVALID;
 | |
|   bound_textures[stage] = entry;
 | |
| 
 | |
|   GFX_DEBUGGER_PAUSE_AT(NEXT_TEXTURE_CHANGE, true);
 | |
| 
 | |
|   return entry;
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::BindTextures()
 | |
| {
 | |
|   for (int i = 0; i < 8; ++i)
 | |
|   {
 | |
|     if (bound_textures[i])
 | |
|       bound_textures[i]->Bind(i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::UnbindTextures()
 | |
| {
 | |
|   std::fill(std::begin(bound_textures), std::end(bound_textures), nullptr);
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TCacheEntryBase* TextureCacheBase::Load(const u32 stage)
 | |
| {
 | |
|   const FourTexUnits& tex = bpmem.tex[stage >> 2];
 | |
|   const u32 id = stage & 3;
 | |
|   const u32 address = (tex.texImage3[id].image_base /* & 0x1FFFFF*/) << 5;
 | |
|   u32 width = tex.texImage0[id].width + 1;
 | |
|   u32 height = tex.texImage0[id].height + 1;
 | |
|   const int texformat = tex.texImage0[id].format;
 | |
|   const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
 | |
|   const u32 tlutfmt = tex.texTlut[id].tlut_format;
 | |
|   const bool use_mipmaps = SamplerCommon::AreBpTexMode0MipmapsEnabled(tex.texMode0[id]);
 | |
|   u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
 | |
|   const bool from_tmem = tex.texImage1[id].image_type != 0;
 | |
| 
 | |
|   // TexelSizeInNibbles(format) * width * height / 16;
 | |
|   const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat);
 | |
|   const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat);
 | |
| 
 | |
|   unsigned int expandedWidth = Common::AlignUp(width, bsw);
 | |
|   unsigned int expandedHeight = Common::AlignUp(height, bsh);
 | |
|   const unsigned int nativeW = width;
 | |
|   const unsigned int nativeH = height;
 | |
| 
 | |
|   // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and
 | |
|   // custom texture lookup)
 | |
|   u64 base_hash = TEXHASH_INVALID;
 | |
|   u64 full_hash = TEXHASH_INVALID;
 | |
| 
 | |
|   u32 full_format = texformat;
 | |
| 
 | |
|   const bool isPaletteTexture =
 | |
|       (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);
 | |
| 
 | |
|   // Reject invalid tlut format.
 | |
|   if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (isPaletteTexture)
 | |
|     full_format = texformat | (tlutfmt << 16);
 | |
| 
 | |
|   const u32 texture_size =
 | |
|       TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
 | |
|   u32 additional_mips_size = 0;  // not including level 0, which is texture_size
 | |
| 
 | |
|   // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in
 | |
|   // the mipmap chain
 | |
|   // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we
 | |
|   // limit the mipmap count to 6 there
 | |
|   tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);
 | |
| 
 | |
|   for (u32 level = 1; level != tex_levels; ++level)
 | |
|   {
 | |
|     // We still need to calculate the original size of the mips
 | |
|     const u32 expanded_mip_width = Common::AlignUp(CalculateLevelSize(width, level), bsw);
 | |
|     const u32 expanded_mip_height = Common::AlignUp(CalculateLevelSize(height, level), bsh);
 | |
| 
 | |
|     additional_mips_size +=
 | |
|         TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
 | |
|   }
 | |
| 
 | |
|   const u8* src_data;
 | |
|   if (from_tmem)
 | |
|     src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
 | |
|   else
 | |
|     src_data = Memory::GetPointer(address);
 | |
| 
 | |
|   if (!src_data)
 | |
|   {
 | |
|     ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", address);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If we are recording a FifoLog, keep track of what memory we read.
 | |
|   // FifiRecorder does it's own memory modification tracking independant of the texture hashing
 | |
|   // below.
 | |
|   if (g_bRecordFifoData && !from_tmem)
 | |
|     FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size,
 | |
|                                           MemoryUpdate::TEXTURE_MAP);
 | |
| 
 | |
|   // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data
 | |
|   // from the low tmem bank than it should)
 | |
|   base_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
 | |
|   u32 palette_size = 0;
 | |
|   if (isPaletteTexture)
 | |
|   {
 | |
|     palette_size = TexDecoder_GetPaletteSize(texformat);
 | |
|     full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size,
 | |
|                                       g_ActiveConfig.iSafeTextureCache_ColorSamples);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     full_hash = base_hash;
 | |
|   }
 | |
| 
 | |
|   // Search the texture cache for textures by address
 | |
|   //
 | |
|   // Find all texture cache entries for the current texture address, and decide whether to use one
 | |
|   // of
 | |
|   // them, or to create a new one
 | |
|   //
 | |
|   // In most cases, the fastest way is to use only one texture cache entry for the same address.
 | |
|   // Usually,
 | |
|   // when a texture changes, the old version of the texture is unlikely to be used again. If there
 | |
|   // were
 | |
|   // new cache entries created for normal texture updates, there would be a slowdown due to a huge
 | |
|   // amount
 | |
|   // of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
 | |
|   // faster than creating a new one from scratch.
 | |
|   //
 | |
|   // Some games use the same address for different textures though. If the same cache entry was used
 | |
|   // in
 | |
|   // this case, it would be constantly overwritten, and effectively there wouldn't be any caching
 | |
|   // for
 | |
|   // those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has
 | |
|   // multiple
 | |
|   // sets of fonts on each other stored in a single texture and uses the palette to make different
 | |
|   // characters visible or invisible. In Castlevania 3 some textures are used for 2 different things
 | |
|   // or
 | |
|   // at least in 2 different ways(size 1024x1024 vs 1024x256).
 | |
|   //
 | |
|   // To determine whether to use multiple cache entries or a single entry, use the following
 | |
|   // heuristic:
 | |
|   // If the same texture address is used several times during the same frame, assume the address is
 | |
|   // used
 | |
|   // for different purposes and allow creating an additional cache entry. If there's at least one
 | |
|   // entry
 | |
|   // that hasn't been used for the same frame, then overwrite it, in order to keep the cache as
 | |
|   // small as
 | |
|   // possible. If the current texture is found in the cache, use that entry.
 | |
|   //
 | |
|   // For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else
 | |
|   // it was
 | |
|   // done in vain.
 | |
|   auto iter_range = textures_by_address.equal_range(address);
 | |
|   TexAddrCache::iterator iter = iter_range.first;
 | |
|   TexAddrCache::iterator oldest_entry = iter;
 | |
|   int temp_frameCount = 0x7fffffff;
 | |
|   TexAddrCache::iterator unconverted_copy = textures_by_address.end();
 | |
| 
 | |
|   while (iter != iter_range.second)
 | |
|   {
 | |
|     TCacheEntryBase* entry = iter->second;
 | |
|     // Do not load strided EFB copies, they are not meant to be used directly
 | |
|     if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH &&
 | |
|         entry->memory_stride == entry->BytesPerRow())
 | |
|     {
 | |
|       // EFB copies have slightly different rules as EFB copy formats have different
 | |
|       // meanings from texture formats.
 | |
|       if ((base_hash == entry->hash &&
 | |
|            (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) ||
 | |
|           IsPlayingBackFifologWithBrokenEFBCopies)
 | |
|       {
 | |
|         // TODO: We should check format/width/height/levels for EFB copies. Checking
 | |
|         // format is complicated because EFB copy formats don't exactly match
 | |
|         // texture formats. I'm not sure what effect checking width/height/levels
 | |
|         // would have.
 | |
|         if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
 | |
|           return ReturnEntry(stage, entry);
 | |
| 
 | |
|         // Note that we found an unconverted EFB copy, then continue.  We'll
 | |
|         // perform the conversion later.  Currently, we only convert EFB copies to
 | |
|         // palette textures; we could do other conversions if it proved to be
 | |
|         // beneficial.
 | |
|         unconverted_copy = iter;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // Aggressively prune EFB copies: if it isn't useful here, it will probably
 | |
|         // never be useful again.  It's theoretically possible for a game to do
 | |
|         // something weird where the copy could become useful in the future, but in
 | |
|         // practice it doesn't happen.
 | |
|         iter = InvalidateTexture(iter);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // For normal textures, all texture parameters need to match
 | |
|       if (entry->hash == full_hash && entry->format == full_format &&
 | |
|           entry->native_levels >= tex_levels && entry->native_width == nativeW &&
 | |
|           entry->native_height == nativeH)
 | |
|       {
 | |
|         entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt);
 | |
| 
 | |
|         return ReturnEntry(stage, entry);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Find the texture which hasn't been used for the longest time. Count paletted
 | |
|     // textures as the same texture here, when the texture itself is the same. This
 | |
|     // improves the performance a lot in some games that use paletted textures.
 | |
|     // Example: Sonic the Fighters (inside Sonic Gems Collection)
 | |
|     // Skip EFB copies here, so they can be used for partial texture updates
 | |
|     if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
 | |
|         !entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash))
 | |
|     {
 | |
|       temp_frameCount = entry->frameCount;
 | |
|       oldest_entry = iter;
 | |
|     }
 | |
|     ++iter;
 | |
|   }
 | |
| 
 | |
|   if (unconverted_copy != textures_by_address.end())
 | |
|   {
 | |
|     TCacheEntryBase* decoded_entry =
 | |
|         ApplyPaletteToEntry(unconverted_copy->second, &texMem[tlutaddr], tlutfmt);
 | |
| 
 | |
|     if (decoded_entry)
 | |
|     {
 | |
|       return ReturnEntry(stage, decoded_entry);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Search the texture cache for normal textures by hash
 | |
|   //
 | |
|   // If the texture was fully hashed, the address does not need to match. Identical duplicate
 | |
|   // textures cause unnecessary slowdowns
 | |
|   // Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70
 | |
|   // different ones
 | |
|   if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
 | |
|       std::max(texture_size, palette_size) <=
 | |
|           (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
 | |
|   {
 | |
|     auto hash_range = textures_by_hash.equal_range(full_hash);
 | |
|     TexHashCache::iterator hash_iter = hash_range.first;
 | |
|     while (hash_iter != hash_range.second)
 | |
|     {
 | |
|       TCacheEntryBase* entry = hash_iter->second;
 | |
|       // All parameters, except the address, need to match here
 | |
|       if (entry->format == full_format && entry->native_levels >= tex_levels &&
 | |
|           entry->native_width == nativeW && entry->native_height == nativeH)
 | |
|       {
 | |
|         entry = DoPartialTextureUpdates(hash_iter->second, &texMem[tlutaddr], tlutfmt);
 | |
| 
 | |
|         return ReturnEntry(stage, entry);
 | |
|       }
 | |
|       ++hash_iter;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If at least one entry was not used for the same frame, overwrite the oldest one
 | |
|   if (temp_frameCount != 0x7fffffff)
 | |
|   {
 | |
|     // pool this texture and make a new one later
 | |
|     InvalidateTexture(oldest_entry);
 | |
|   }
 | |
| 
 | |
|   std::shared_ptr<HiresTexture> hires_tex;
 | |
|   if (g_ActiveConfig.bHiresTextures)
 | |
|   {
 | |
|     hires_tex = HiresTexture::Search(src_data, texture_size, &texMem[tlutaddr], palette_size, width,
 | |
|                                      height, texformat, use_mipmaps);
 | |
| 
 | |
|     if (hires_tex)
 | |
|     {
 | |
|       const auto& level = hires_tex->m_levels[0];
 | |
|       if (level.width != width || level.height != height)
 | |
|       {
 | |
|         width = level.width;
 | |
|         height = level.height;
 | |
|       }
 | |
|       expandedWidth = level.width;
 | |
|       expandedHeight = level.height;
 | |
|       CheckTempSize(level.data_size);
 | |
|       memcpy(temp, level.data.get(), level.data_size);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // how many levels the allocated texture shall have
 | |
|   const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;
 | |
| 
 | |
|   // create the entry/texture
 | |
|   TCacheEntryConfig config;
 | |
|   config.width = width;
 | |
|   config.height = height;
 | |
|   config.levels = texLevels;
 | |
| 
 | |
|   TCacheEntryBase* entry = AllocateTexture(config);
 | |
|   GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);
 | |
| 
 | |
|   if (!entry)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!hires_tex)
 | |
|   {
 | |
|     if (!(texformat == GX_TF_RGBA8 && from_tmem))
 | |
|     {
 | |
|       const u8* tlut = &texMem[tlutaddr];
 | |
|       TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut,
 | |
|                         (TlutFormat)tlutfmt);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       u8* src_data_gb =
 | |
|           &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
 | |
|       TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   iter = textures_by_address.emplace(address, entry);
 | |
|   if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
 | |
|       std::max(texture_size, palette_size) <=
 | |
|           (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
 | |
|   {
 | |
|     entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry);
 | |
|   }
 | |
| 
 | |
|   entry->SetGeneralParameters(address, texture_size, full_format);
 | |
|   entry->SetDimensions(nativeW, nativeH, tex_levels);
 | |
|   entry->SetHashes(base_hash, full_hash);
 | |
|   entry->is_efb_copy = false;
 | |
|   entry->is_custom_tex = hires_tex != nullptr;
 | |
| 
 | |
|   // load texture
 | |
|   entry->Load(temp, width, height, expandedWidth, 0);
 | |
| 
 | |
|   std::string basename = "";
 | |
|   if (g_ActiveConfig.bDumpTextures && !hires_tex)
 | |
|   {
 | |
|     basename = HiresTexture::GenBaseName(src_data, texture_size, &texMem[tlutaddr], palette_size,
 | |
|                                          width, height, texformat, use_mipmaps, true);
 | |
|     DumpTexture(entry, basename, 0);
 | |
|   }
 | |
| 
 | |
|   if (hires_tex)
 | |
|   {
 | |
|     for (u32 level_index = 1; level_index != texLevels; ++level_index)
 | |
|     {
 | |
|       const auto& level = hires_tex->m_levels[level_index];
 | |
|       CheckTempSize(level.data_size);
 | |
|       memcpy(temp, level.data.get(), level.data_size);
 | |
|       entry->Load(temp, level.width, level.height, level.width, level_index);
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // load mips - TODO: Loading mipmaps from tmem is untested!
 | |
|     src_data += texture_size;
 | |
| 
 | |
|     const u8* ptr_even = nullptr;
 | |
|     const u8* ptr_odd = nullptr;
 | |
|     if (from_tmem)
 | |
|     {
 | |
|       ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE +
 | |
|                          texture_size];
 | |
|       ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
 | |
|     }
 | |
| 
 | |
|     for (u32 level = 1; level != texLevels; ++level)
 | |
|     {
 | |
|       const u32 mip_width = CalculateLevelSize(width, level);
 | |
|       const u32 mip_height = CalculateLevelSize(height, level);
 | |
|       const u32 expanded_mip_width = Common::AlignUp(mip_width, bsw);
 | |
|       const u32 expanded_mip_height = Common::AlignUp(mip_height, bsh);
 | |
| 
 | |
|       const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data;
 | |
|       const u8* tlut = &texMem[tlutaddr];
 | |
|       TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat,
 | |
|                         tlut, (TlutFormat)tlutfmt);
 | |
|       mip_src_data +=
 | |
|           TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
 | |
| 
 | |
|       entry->Load(temp, mip_width, mip_height, expanded_mip_width, level);
 | |
| 
 | |
|       if (g_ActiveConfig.bDumpTextures)
 | |
|         DumpTexture(entry, basename, level);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   INCSTAT(stats.numTexturesUploaded);
 | |
|   SETSTAT(stats.numTexturesAlive, textures_by_address.size());
 | |
| 
 | |
|   entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt);
 | |
| 
 | |
|   return ReturnEntry(stage, entry);
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, u32 dstStride,
 | |
|                                                  bool is_depth_copy, const EFBRectangle& srcRect,
 | |
|                                                  bool isIntensity, bool scaleByHalf)
 | |
| {
 | |
|   // Emulation methods:
 | |
|   //
 | |
|   // - EFB to RAM:
 | |
|   //      Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
 | |
|   //      Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being
 | |
|   //      used as a texture again.
 | |
|   //      Advantage: CPU can read data from the EFB copy and we don't lose any important updates to
 | |
|   //      the texture
 | |
|   //      Disadvantage: Encoding+decoding steps often are redundant because only some games read or
 | |
|   //      modify EFB copies before using them as textures.
 | |
|   //
 | |
|   // - EFB to texture:
 | |
|   //      Copies the requested EFB data to a texture object in VRAM, performing any color conversion
 | |
|   //      using shaders.
 | |
|   //      Advantage: Works for many games, since in most cases EFB copies aren't read or modified at
 | |
|   //      all before being used as a texture again.
 | |
|   //                 Since we don't do any further encoding or decoding here, this method is much
 | |
|   //                 faster.
 | |
|   //                 It also allows enhancing the visual quality by doing scaled EFB copies.
 | |
|   //
 | |
|   // - Hybrid EFB copies:
 | |
|   //      1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to
 | |
|   //      RAM)
 | |
|   //      1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address
 | |
|   //      range.
 | |
|   //          If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB
 | |
|   //          copies.
 | |
|   //      2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB
 | |
|   //      copy was triggered to that address before):
 | |
|   //      2a) Entry doesn't exist:
 | |
|   //          - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
 | |
|   //          - Create a texture cache entry for the target (type = TCET_EC_VRAM)
 | |
|   //          - Store a hash of the encoded RAM data in the texcache entry.
 | |
|   //      2b) Entry exists AND type is TCET_EC_VRAM:
 | |
|   //          - Like case 2a, but reuse the old texcache entry instead of creating a new one.
 | |
|   //      2c) Entry exists AND type is TCET_EC_DYNAMIC:
 | |
|   //          - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded
 | |
|   //          data in the existing texcache entry.
 | |
|   //          - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic,
 | |
|   //          i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end
 | |
|   //          up deleting it and reloading the data from RAM anyway.
 | |
|   //      3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you
 | |
|   //      stored when encoding the EFB data to RAM.
 | |
|   //      3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
 | |
|   //      3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set
 | |
|   //      type to TCET_EC_DYNAMIC.
 | |
|   //          Redecode the source RAM data to a VRAM object. The entry basically behaves like a
 | |
|   //          normal texture now.
 | |
|   //      3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
 | |
|   //      Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
 | |
|   //                 Compatibility is as good as EFB to RAM.
 | |
|   //      Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
 | |
|   //                    EFB copy cache depends on accurate texture hashing being enabled. However,
 | |
|   //                    with accurate hashing you end up being as slow as without a copy cache
 | |
|   //                    anyway.
 | |
|   //
 | |
|   // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush
 | |
|   // which stalls any further CPU processing.
 | |
|   //
 | |
|   // For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but
 | |
|   // only EFB to texture and hybrid EFB copies.
 | |
| 
 | |
|   float colmat[28] = {0};
 | |
|   float* const fConstAdd = colmat + 16;
 | |
|   float* const ColorMask = colmat + 20;
 | |
|   ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f;
 | |
|   ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f;
 | |
|   unsigned int cbufid = -1;
 | |
|   bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;
 | |
| 
 | |
|   if (is_depth_copy)
 | |
|   {
 | |
|     switch (dstFormat)
 | |
|     {
 | |
|     case 0:  // Z4
 | |
|       colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
 | |
|       cbufid = 0;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
|     case 8:  // Z8H
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|     case 1:  // Z8
 | |
|       colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f;
 | |
|       cbufid = 1;
 | |
|       break;
 | |
| 
 | |
|     case 3:  // Z16
 | |
|       colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f;
 | |
|       cbufid = 2;
 | |
|       break;
 | |
| 
 | |
|     case 11:  // Z16 (reverse order)
 | |
|       colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
 | |
|       cbufid = 3;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 6:  // Z24X8
 | |
|       colmat[0] = colmat[5] = colmat[10] = 1.0f;
 | |
|       cbufid = 4;
 | |
|       break;
 | |
| 
 | |
|     case 9:  // Z8M
 | |
|       colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
 | |
|       cbufid = 5;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 10:  // Z8L
 | |
|       colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
 | |
|       cbufid = 6;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 12:  // Z16L - copy lower 16 depth bits
 | |
|       // expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits
 | |
|       // stored as alpha)
 | |
|       // Used e.g. in Zelda: Skyward Sword
 | |
|       colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f;
 | |
|       cbufid = 7;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat);
 | |
|       colmat[2] = colmat[5] = colmat[8] = 1.0f;
 | |
|       cbufid = 8;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     dstFormat |= _GX_TF_ZTF;
 | |
|   }
 | |
|   else if (isIntensity)
 | |
|   {
 | |
|     fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f / 255.0f;
 | |
|     switch (dstFormat)
 | |
|     {
 | |
|     case 0:  // I4
 | |
|     case 1:  // I8
 | |
|     case 2:  // IA4
 | |
|     case 3:  // IA8
 | |
|     case 8:  // I8
 | |
|       // TODO - verify these coefficients
 | |
|       colmat[0] = 0.257f;
 | |
|       colmat[1] = 0.504f;
 | |
|       colmat[2] = 0.098f;
 | |
|       colmat[4] = 0.257f;
 | |
|       colmat[5] = 0.504f;
 | |
|       colmat[6] = 0.098f;
 | |
|       colmat[8] = 0.257f;
 | |
|       colmat[9] = 0.504f;
 | |
|       colmat[10] = 0.098f;
 | |
| 
 | |
|       if (dstFormat < 2 || dstFormat == 8)
 | |
|       {
 | |
|         colmat[12] = 0.257f;
 | |
|         colmat[13] = 0.504f;
 | |
|         colmat[14] = 0.098f;
 | |
|         fConstAdd[3] = 16.0f / 255.0f;
 | |
|         if (dstFormat == 0)
 | |
|         {
 | |
|           ColorMask[0] = ColorMask[1] = ColorMask[2] = 255.0f / 16.0f;
 | |
|           ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f;
 | |
|           cbufid = 9;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           cbufid = 10;
 | |
|         }
 | |
|       }
 | |
|       else  // alpha
 | |
|       {
 | |
|         colmat[15] = 1;
 | |
|         if (dstFormat == 2)
 | |
|         {
 | |
|           ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f / 16.0f;
 | |
|           ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f;
 | |
|           cbufid = 11;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           cbufid = 12;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat);
 | |
|       colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
 | |
|       cbufid = 13;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     switch (dstFormat)
 | |
|     {
 | |
|     case 0:  // R4
 | |
|       colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1;
 | |
|       ColorMask[0] = 255.0f / 16.0f;
 | |
|       ColorMask[4] = 1.0f / 15.0f;
 | |
|       cbufid = 14;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
|     case 1:  // R8
 | |
|     case 8:  // R8
 | |
|       colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1;
 | |
|       cbufid = 15;
 | |
|       dstFormat = GX_CTF_R8;
 | |
|       break;
 | |
| 
 | |
|     case 2:  // RA4
 | |
|       colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f;
 | |
|       ColorMask[0] = ColorMask[3] = 255.0f / 16.0f;
 | |
|       ColorMask[4] = ColorMask[7] = 1.0f / 15.0f;
 | |
| 
 | |
|       cbufid = 16;
 | |
|       if (!efbHasAlpha)
 | |
|       {
 | |
|         ColorMask[3] = 0.0f;
 | |
|         fConstAdd[3] = 1.0f;
 | |
|         cbufid = 17;
 | |
|       }
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
|     case 3:  // RA8
 | |
|       colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f;
 | |
| 
 | |
|       cbufid = 18;
 | |
|       if (!efbHasAlpha)
 | |
|       {
 | |
|         ColorMask[3] = 0.0f;
 | |
|         fConstAdd[3] = 1.0f;
 | |
|         cbufid = 19;
 | |
|       }
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 7:  // A8
 | |
|       colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
 | |
| 
 | |
|       cbufid = 20;
 | |
|       if (!efbHasAlpha)
 | |
|       {
 | |
|         ColorMask[3] = 0.0f;
 | |
|         fConstAdd[0] = 1.0f;
 | |
|         fConstAdd[1] = 1.0f;
 | |
|         fConstAdd[2] = 1.0f;
 | |
|         fConstAdd[3] = 1.0f;
 | |
|         cbufid = 21;
 | |
|       }
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 9:  // G8
 | |
|       colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
 | |
|       cbufid = 22;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
|     case 10:  // B8
 | |
|       colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
 | |
|       cbufid = 23;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 11:  // RG8
 | |
|       colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
 | |
|       cbufid = 24;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 12:  // GB8
 | |
|       colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f;
 | |
|       cbufid = 25;
 | |
|       dstFormat |= _GX_TF_CTF;
 | |
|       break;
 | |
| 
 | |
|     case 4:  // RGB565
 | |
|       colmat[0] = colmat[5] = colmat[10] = 1.0f;
 | |
|       ColorMask[0] = ColorMask[2] = 255.0f / 8.0f;
 | |
|       ColorMask[4] = ColorMask[6] = 1.0f / 31.0f;
 | |
|       ColorMask[1] = 255.0f / 4.0f;
 | |
|       ColorMask[5] = 1.0f / 63.0f;
 | |
|       fConstAdd[3] = 1.0f;  // set alpha to 1
 | |
|       cbufid = 26;
 | |
|       break;
 | |
| 
 | |
|     case 5:  // RGB5A3
 | |
|       colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
 | |
|       ColorMask[0] = ColorMask[1] = ColorMask[2] = 255.0f / 8.0f;
 | |
|       ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f;
 | |
|       ColorMask[3] = 255.0f / 32.0f;
 | |
|       ColorMask[7] = 1.0f / 7.0f;
 | |
| 
 | |
|       cbufid = 27;
 | |
|       if (!efbHasAlpha)
 | |
|       {
 | |
|         ColorMask[3] = 0.0f;
 | |
|         fConstAdd[3] = 1.0f;
 | |
|         cbufid = 28;
 | |
|       }
 | |
|       break;
 | |
|     case 6:  // RGBA8
 | |
|       colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
 | |
| 
 | |
|       cbufid = 29;
 | |
|       if (!efbHasAlpha)
 | |
|       {
 | |
|         ColorMask[3] = 0.0f;
 | |
|         fConstAdd[3] = 1.0f;
 | |
|         cbufid = 30;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat);
 | |
|       colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
 | |
|       cbufid = 31;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   u8* dst = Memory::GetPointer(dstAddr);
 | |
|   if (dst == nullptr)
 | |
|   {
 | |
|     ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth() / 2 : srcRect.GetWidth();
 | |
|   const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight() / 2 : srcRect.GetHeight();
 | |
| 
 | |
|   unsigned int scaled_tex_w =
 | |
|       g_ActiveConfig.bCopyEFBScaled ? g_renderer->EFBToScaledX(tex_w) : tex_w;
 | |
|   unsigned int scaled_tex_h =
 | |
|       g_ActiveConfig.bCopyEFBScaled ? g_renderer->EFBToScaledY(tex_h) : tex_h;
 | |
| 
 | |
|   // Remove all texture cache entries at dstAddr
 | |
|   //   It's not possible to have two EFB copies at the same address, this makes sure any old efb
 | |
|   //   copies
 | |
|   //   (or normal textures) are removed from texture cache. They are also un-linked from any
 | |
|   //   partially
 | |
|   //   updated textures, which forces that partially updated texture to be updated.
 | |
|   // TODO: This also wipes out non-efb copies, which is counterproductive.
 | |
|   {
 | |
|     auto iter_range = textures_by_address.equal_range(dstAddr);
 | |
|     TexAddrCache::iterator iter = iter_range.first;
 | |
|     while (iter != iter_range.second)
 | |
|     {
 | |
|       iter = InvalidateTexture(iter);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the base (in memory) format of this efb copy.
 | |
|   int baseFormat = TexDecoder_GetEfbCopyBaseFormat(dstFormat);
 | |
| 
 | |
|   u32 blockH = TexDecoder_GetBlockHeightInTexels(baseFormat);
 | |
|   const u32 blockW = TexDecoder_GetBlockWidthInTexels(baseFormat);
 | |
| 
 | |
|   // Round up source height to multiple of block size
 | |
|   u32 actualHeight = Common::AlignUp(tex_h, blockH);
 | |
|   const u32 actualWidth = Common::AlignUp(tex_w, blockW);
 | |
| 
 | |
|   u32 num_blocks_y = actualHeight / blockH;
 | |
|   const u32 num_blocks_x = actualWidth / blockW;
 | |
| 
 | |
|   // RGBA takes two cache lines per block; all others take one
 | |
|   const u32 bytes_per_block = baseFormat == GX_TF_RGBA8 ? 64 : 32;
 | |
| 
 | |
|   const u32 bytes_per_row = num_blocks_x * bytes_per_block;
 | |
|   const u32 covered_range = num_blocks_y * dstStride;
 | |
| 
 | |
|   bool copy_to_ram = !g_ActiveConfig.bSkipEFBCopyToRam;
 | |
|   bool copy_to_vram = true;
 | |
| 
 | |
|   if (copy_to_ram)
 | |
|   {
 | |
|     CopyEFB(dst, dstFormat, tex_w, bytes_per_row, num_blocks_y, dstStride, is_depth_copy, srcRect,
 | |
|             isIntensity, scaleByHalf);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // Hack: Most games don't actually need the correct texture data in RAM
 | |
|     //       and we can just keep a copy in VRAM. We zero the memory so we
 | |
|     //       can check it hasn't changed before using our copy in VRAM.
 | |
|     u8* ptr = dst;
 | |
|     for (u32 i = 0; i < num_blocks_y; i++)
 | |
|     {
 | |
|       memset(ptr, 0, bytes_per_row);
 | |
|       ptr += dstStride;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (g_bRecordFifoData)
 | |
|   {
 | |
|     // Mark the memory behind this efb copy as dynamicly generated for the Fifo log
 | |
|     u32 address = dstAddr;
 | |
|     for (u32 i = 0; i < num_blocks_y; i++)
 | |
|     {
 | |
|       FifoRecorder::GetInstance().UseMemory(address, bytes_per_row, MemoryUpdate::TEXTURE_MAP,
 | |
|                                             true);
 | |
|       address += dstStride;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (dstStride < bytes_per_row)
 | |
|   {
 | |
|     // This kind of efb copy results in a scrambled image.
 | |
|     // I'm pretty sure no game actually wants to do this, it might be caused by a
 | |
|     // programming bug in the game, or a CPU/Bounding box emulation issue with dolphin.
 | |
|     // The copy_to_ram code path above handles this "correctly" and scrambles the image
 | |
|     // but the copy_to_vram code path just saves and uses unscrambled texture instead.
 | |
| 
 | |
|     // To avoid a "incorrect" result, we simply skip doing the copy_to_vram code path
 | |
|     // so if the game does try to use the scrambled texture, dolphin will grab the scrambled
 | |
|     // texture (or black if copy_to_ram is also disabled) out of ram.
 | |
|     ERROR_LOG(VIDEO, "Memory stride too small (%i < %i)", dstStride, bytes_per_row);
 | |
|     copy_to_vram = false;
 | |
|   }
 | |
| 
 | |
|   // Invalidate all textures that overlap the range of our efb copy.
 | |
|   // Unless our efb copy has a weird stride, then we mark them to check for partial texture updates.
 | |
|   // TODO: This also invalidates partial overlaps, which we currently don't have a better way
 | |
|   //       of dealing with.
 | |
|   bool invalidate_textures = dstStride == bytes_per_row || !copy_to_vram;
 | |
|   auto iter = FindOverlappingTextures(dstAddr, covered_range);
 | |
|   while (iter.first != iter.second)
 | |
|   {
 | |
|     TCacheEntryBase* entry = iter.first->second;
 | |
|     if (entry->OverlapsMemoryRange(dstAddr, covered_range))
 | |
|     {
 | |
|       if (invalidate_textures)
 | |
|       {
 | |
|         iter.first = InvalidateTexture(iter.first);
 | |
|         continue;
 | |
|       }
 | |
|       entry->may_have_overlapping_textures = true;
 | |
|     }
 | |
|     ++iter.first;
 | |
|   }
 | |
| 
 | |
|   if (copy_to_vram)
 | |
|   {
 | |
|     // create the texture
 | |
|     TCacheEntryConfig config;
 | |
|     config.rendertarget = true;
 | |
|     config.width = scaled_tex_w;
 | |
|     config.height = scaled_tex_h;
 | |
|     config.layers = FramebufferManagerBase::GetEFBLayers();
 | |
| 
 | |
|     TCacheEntryBase* entry = AllocateTexture(config);
 | |
| 
 | |
|     if (entry)
 | |
|     {
 | |
|       entry->SetGeneralParameters(dstAddr, 0, baseFormat);
 | |
|       entry->SetDimensions(tex_w, tex_h, 1);
 | |
| 
 | |
|       entry->frameCount = FRAMECOUNT_INVALID;
 | |
|       entry->SetEfbCopy(dstStride);
 | |
|       entry->is_custom_tex = false;
 | |
| 
 | |
|       entry->FromRenderTarget(is_depth_copy, srcRect, scaleByHalf, cbufid, colmat);
 | |
| 
 | |
|       u64 hash = entry->CalculateHash();
 | |
|       entry->SetHashes(hash, hash);
 | |
| 
 | |
|       if (g_ActiveConfig.bDumpEFBTarget)
 | |
|       {
 | |
|         static int count = 0;
 | |
|         entry->Save(StringFromFormat("%sefb_frame_%i.png",
 | |
|                                      File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(), count++),
 | |
|                     0);
 | |
|       }
 | |
| 
 | |
|       textures_by_address.emplace(dstAddr, entry);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TCacheEntryBase*
 | |
| TextureCacheBase::AllocateTexture(const TCacheEntryConfig& config)
 | |
| {
 | |
|   TexPool::iterator iter = FindMatchingTextureFromPool(config);
 | |
|   TextureCacheBase::TCacheEntryBase* entry;
 | |
|   if (iter != texture_pool.end())
 | |
|   {
 | |
|     entry = iter->second;
 | |
|     texture_pool.erase(iter);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     entry = CreateTexture(config);
 | |
|     if (!entry)
 | |
|       return nullptr;
 | |
| 
 | |
|     INCSTAT(stats.numTexturesCreated);
 | |
|   }
 | |
| 
 | |
|   entry->textures_by_hash_iter = textures_by_hash.end();
 | |
|   entry->may_have_overlapping_textures = true;
 | |
|   return entry;
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TexPool::iterator
 | |
| TextureCacheBase::FindMatchingTextureFromPool(const TCacheEntryConfig& config)
 | |
| {
 | |
|   // Find a texture from the pool that does not have a frameCount of FRAMECOUNT_INVALID.
 | |
|   // This prevents a texture from being used twice in a single frame with different data,
 | |
|   // which potentially means that a driver has to maintain two copies of the texture anyway.
 | |
|   auto range = texture_pool.equal_range(config);
 | |
|   auto matching_iter = std::find_if(range.first, range.second, [](const auto& iter) {
 | |
|     return iter.second->frameCount != FRAMECOUNT_INVALID;
 | |
|   });
 | |
|   return matching_iter != range.second ? matching_iter : texture_pool.end();
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TexAddrCache::iterator
 | |
| TextureCacheBase::GetTexCacheIter(TextureCacheBase::TCacheEntryBase* entry)
 | |
| {
 | |
|   auto iter_range = textures_by_address.equal_range(entry->addr);
 | |
|   TexAddrCache::iterator iter = iter_range.first;
 | |
|   while (iter != iter_range.second)
 | |
|   {
 | |
|     if (iter->second == entry)
 | |
|     {
 | |
|       return iter;
 | |
|     }
 | |
|     ++iter;
 | |
|   }
 | |
|   return textures_by_address.end();
 | |
| }
 | |
| 
 | |
| std::pair<TextureCacheBase::TexAddrCache::iterator, TextureCacheBase::TexAddrCache::iterator>
 | |
| TextureCacheBase::FindOverlappingTextures(u32 addr, u32 size_in_bytes)
 | |
| {
 | |
|   // We index by the starting address only, so there is no way to query all textures
 | |
|   // which end after the given addr. But the GC textures have a limited size, so we
 | |
|   // look for all textures which have a start address bigger than addr minus the maximal
 | |
|   // texture size. But this yields false-positives which must be checked later on.
 | |
| 
 | |
|   // 1024 x 1024 texel times 8 nibbles per texel
 | |
|   constexpr u32 max_texture_size = 1024 * 1024 * 4;
 | |
|   u32 lower_addr = addr > max_texture_size ? addr - max_texture_size : 0;
 | |
|   auto begin = textures_by_address.lower_bound(lower_addr);
 | |
|   auto end = textures_by_address.upper_bound(addr + size_in_bytes);
 | |
| 
 | |
|   return std::make_pair(begin, end);
 | |
| }
 | |
| 
 | |
| TextureCacheBase::TexAddrCache::iterator
 | |
| TextureCacheBase::InvalidateTexture(TexAddrCache::iterator iter)
 | |
| {
 | |
|   if (iter == textures_by_address.end())
 | |
|     return textures_by_address.end();
 | |
| 
 | |
|   TCacheEntryBase* entry = iter->second;
 | |
| 
 | |
|   if (entry->textures_by_hash_iter != textures_by_hash.end())
 | |
|   {
 | |
|     textures_by_hash.erase(entry->textures_by_hash_iter);
 | |
|     entry->textures_by_hash_iter = textures_by_hash.end();
 | |
|   }
 | |
| 
 | |
|   entry->DestroyAllReferences();
 | |
| 
 | |
|   entry->frameCount = FRAMECOUNT_INVALID;
 | |
|   texture_pool.emplace(entry->config, entry);
 | |
| 
 | |
|   return textures_by_address.erase(iter);
 | |
| }
 | |
| 
 | |
| u32 TextureCacheBase::TCacheEntryBase::BytesPerRow() const
 | |
| {
 | |
|   const u32 blockW = TexDecoder_GetBlockWidthInTexels(format);
 | |
| 
 | |
|   // Round up source height to multiple of block size
 | |
|   const u32 actualWidth = Common::AlignUp(native_width, blockW);
 | |
| 
 | |
|   const u32 numBlocksX = actualWidth / blockW;
 | |
| 
 | |
|   // RGBA takes two cache lines per block; all others take one
 | |
|   const u32 bytes_per_block = format == GX_TF_RGBA8 ? 64 : 32;
 | |
| 
 | |
|   return numBlocksX * bytes_per_block;
 | |
| }
 | |
| 
 | |
| u32 TextureCacheBase::TCacheEntryBase::NumBlocksY() const
 | |
| {
 | |
|   u32 blockH = TexDecoder_GetBlockHeightInTexels(format);
 | |
|   // Round up source height to multiple of block size
 | |
|   u32 actualHeight = Common::AlignUp(native_height, blockH);
 | |
| 
 | |
|   return actualHeight / blockH;
 | |
| }
 | |
| 
 | |
| void TextureCacheBase::TCacheEntryBase::SetEfbCopy(u32 stride)
 | |
| {
 | |
|   is_efb_copy = true;
 | |
|   memory_stride = stride;
 | |
| 
 | |
|   _assert_msg_(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
 | |
| 
 | |
|   size_in_bytes = memory_stride * NumBlocksY();
 | |
| }
 | |
| 
 | |
| u64 TextureCacheBase::TCacheEntryBase::CalculateHash() const
 | |
| {
 | |
|   u8* ptr = Memory::GetPointer(addr);
 | |
|   if (memory_stride == BytesPerRow())
 | |
|   {
 | |
|     return GetHash64(ptr, size_in_bytes, g_ActiveConfig.iSafeTextureCache_ColorSamples);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     u32 blocks = NumBlocksY();
 | |
|     u64 temp_hash = size_in_bytes;
 | |
| 
 | |
|     u32 samples_per_row = 0;
 | |
|     if (g_ActiveConfig.iSafeTextureCache_ColorSamples != 0)
 | |
|     {
 | |
|       // Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left
 | |
|       // side of the efb copy
 | |
|       samples_per_row = std::max(g_ActiveConfig.iSafeTextureCache_ColorSamples / blocks, 4u);
 | |
|     }
 | |
| 
 | |
|     for (u32 i = 0; i < blocks; i++)
 | |
|     {
 | |
|       // Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from
 | |
|       // canceling each other out
 | |
|       temp_hash = (temp_hash * 397) ^ GetHash64(ptr, BytesPerRow(), samples_per_row);
 | |
|       ptr += memory_stride;
 | |
|     }
 | |
|     return temp_hash;
 | |
|   }
 | |
| }
 |