mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-25 01:19:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			193 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2008 Dolphin Emulator Project
 | |
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <bit>
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "Common/CommonTypes.h"
 | |
| 
 | |
| namespace MathUtil
 | |
| {
 | |
| constexpr double TAU = 6.2831853071795865;
 | |
| constexpr double PI = TAU / 2;
 | |
| constexpr double GRAVITY_ACCELERATION = 9.80665;
 | |
| 
 | |
| template <typename T>
 | |
| constexpr auto Sign(const T& val) -> decltype((T{} < val) - (val < T{}))
 | |
| {
 | |
|   return (T{} < val) - (val < T{});
 | |
| }
 | |
| 
 | |
| template <typename T, typename F>
 | |
| constexpr auto Lerp(const T& x, const T& y, const F& a) -> decltype(x + (y - x) * a)
 | |
| {
 | |
|   return x + (y - x) * a;
 | |
| }
 | |
| 
 | |
| // Casts the specified value to a Dest. The value will be clamped to fit in the destination type.
 | |
| // Warning: The result of SaturatingCast(NaN) is undefined.
 | |
| template <typename Dest, typename T>
 | |
| constexpr Dest SaturatingCast(T value)
 | |
| {
 | |
|   static_assert(std::is_integral<Dest>());
 | |
| 
 | |
|   [[maybe_unused]] constexpr Dest lo = std::numeric_limits<Dest>::lowest();
 | |
|   constexpr Dest hi = std::numeric_limits<Dest>::max();
 | |
| 
 | |
|   // T being a signed integer and Dest unsigned is a problematic case because the value will
 | |
|   // be converted into an unsigned integer, and u32(...) < 0 is always false.
 | |
|   if constexpr (std::is_integral<T>() && std::is_signed<T>() && std::is_unsigned<Dest>())
 | |
|   {
 | |
|     static_assert(lo == 0);
 | |
|     if (value < 0)
 | |
|       return lo;
 | |
|     // Now that we got rid of negative values, we can safely cast value to an unsigned T
 | |
|     // since unsigned T can represent any positive value signed T could represent.
 | |
|     // The compiler will then promote the LHS or the RHS if necessary.
 | |
|     if (std::make_unsigned_t<T>(value) > hi)
 | |
|       return hi;
 | |
|   }
 | |
|   else if constexpr (std::is_integral<T>() && std::is_unsigned<T>() && std::is_signed<Dest>())
 | |
|   {
 | |
|     // value and hi will never be negative, and hi is representable as an unsigned Dest.
 | |
|     if (value > std::make_unsigned_t<Dest>(hi))
 | |
|       return hi;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // Do not use std::clamp or a similar function here to avoid overflow.
 | |
|     // For example, if Dest = s64 and T = int, we want integer promotion to convert value to a s64
 | |
|     // instead of changing lo or hi into an int.
 | |
|     if (value < lo)
 | |
|       return lo;
 | |
|     if (value > hi)
 | |
|       return hi;
 | |
|   }
 | |
|   return static_cast<Dest>(value);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| constexpr bool IsPow2(T imm)
 | |
| {
 | |
|   return imm > 0 && (imm & (imm - 1)) == 0;
 | |
| }
 | |
| 
 | |
| constexpr u32 NextPowerOf2(u32 value)
 | |
| {
 | |
|   --value;
 | |
|   value |= value >> 1;
 | |
|   value |= value >> 2;
 | |
|   value |= value >> 4;
 | |
|   value |= value >> 8;
 | |
|   value |= value >> 16;
 | |
|   ++value;
 | |
| 
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| struct Rectangle
 | |
| {
 | |
|   T left{};
 | |
|   T top{};
 | |
|   T right{};
 | |
|   T bottom{};
 | |
| 
 | |
|   constexpr Rectangle() = default;
 | |
| 
 | |
|   constexpr Rectangle(T theLeft, T theTop, T theRight, T theBottom)
 | |
|       : left(theLeft), top(theTop), right(theRight), bottom(theBottom)
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   constexpr bool operator==(const Rectangle& r) const
 | |
|   {
 | |
|     return left == r.left && top == r.top && right == r.right && bottom == r.bottom;
 | |
|   }
 | |
| 
 | |
|   constexpr T GetWidth() const { return GetDistance(left, right); }
 | |
|   constexpr T GetHeight() const { return GetDistance(top, bottom); }
 | |
|   // If the rectangle is in a coordinate system with a lower-left origin, use
 | |
|   // this Clamp.
 | |
|   void ClampLL(T x1, T y1, T x2, T y2)
 | |
|   {
 | |
|     left = std::clamp(left, x1, x2);
 | |
|     right = std::clamp(right, x1, x2);
 | |
|     top = std::clamp(top, y2, y1);
 | |
|     bottom = std::clamp(bottom, y2, y1);
 | |
|   }
 | |
| 
 | |
|   // If the rectangle is in a coordinate system with an upper-left origin,
 | |
|   // use this Clamp.
 | |
|   void ClampUL(T x1, T y1, T x2, T y2)
 | |
|   {
 | |
|     left = std::clamp(left, x1, x2);
 | |
|     right = std::clamp(right, x1, x2);
 | |
|     top = std::clamp(top, y1, y2);
 | |
|     bottom = std::clamp(bottom, y1, y2);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   constexpr T GetDistance(T a, T b) const
 | |
|   {
 | |
|     if constexpr (std::is_unsigned<T>())
 | |
|       return b > a ? b - a : a - b;
 | |
|     else
 | |
|       return std::abs(b - a);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class RunningMean
 | |
| {
 | |
| public:
 | |
|   constexpr void Clear() { *this = {}; }
 | |
| 
 | |
|   constexpr void Push(T x) { m_mean = m_mean + (x - m_mean) / ++m_count; }
 | |
| 
 | |
|   constexpr size_t Count() const { return m_count; }
 | |
|   constexpr T Mean() const { return m_mean; }
 | |
| 
 | |
| private:
 | |
|   size_t m_count = 0;
 | |
|   T m_mean{};
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class RunningVariance
 | |
| {
 | |
| public:
 | |
|   constexpr void Clear() { *this = {}; }
 | |
| 
 | |
|   constexpr void Push(T x)
 | |
|   {
 | |
|     const auto old_mean = m_running_mean.Mean();
 | |
|     m_running_mean.Push(x);
 | |
|     m_variance += (x - old_mean) * (x - m_running_mean.Mean());
 | |
|   }
 | |
| 
 | |
|   constexpr size_t Count() const { return m_running_mean.Count(); }
 | |
|   constexpr T Mean() const { return m_running_mean.Mean(); }
 | |
| 
 | |
|   constexpr T Variance() const { return m_variance / (Count() - 1); }
 | |
|   T StandardDeviation() const { return std::sqrt(Variance()); }
 | |
| 
 | |
|   constexpr T PopulationVariance() const { return m_variance / Count(); }
 | |
|   T PopulationStandardDeviation() const { return std::sqrt(PopulationVariance()); }
 | |
| 
 | |
| private:
 | |
|   RunningMean<T> m_running_mean;
 | |
|   T m_variance{};
 | |
| };
 | |
| 
 | |
| // Rounds down. 0 -> undefined
 | |
| constexpr int IntLog2(u64 val)
 | |
| {
 | |
|   return 63 - std::countl_zero(val);
 | |
| }
 | |
| }  // namespace MathUtil
 |