mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-25 17:39:09 +00:00 
			
		
		
		
	SPDX standardizes how source code conveys its copyright and licensing information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX tags are adopted in many large projects, including things like the Linux kernel.
		
			
				
	
	
		
			363 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			363 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2016 Dolphin Emulator Project
 | |
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| 
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <array>
 | |
| #include <bitset>
 | |
| #include <string>
 | |
| 
 | |
| #include "Common/Config/Config.h"
 | |
| #include "Common/FileUtil.h"
 | |
| #include "Core/ConfigManager.h"
 | |
| #include "Core/Core.h"
 | |
| #include "Core/CoreTiming.h"
 | |
| #include "Core/PowerPC/PowerPC.h"
 | |
| #include "UICommon/UICommon.h"
 | |
| 
 | |
| // Numbers are chosen randomly to make sure the correct one is given.
 | |
| static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
 | |
| static constexpr int MAX_SLICE_LENGTH = 20000;  // Copied from CoreTiming internals
 | |
| 
 | |
| static std::bitset<CB_IDS.size()> s_callbacks_ran_flags;
 | |
| static u64 s_expected_callback = 0;
 | |
| static s64 s_lateness = 0;
 | |
| 
 | |
| template <unsigned int IDX>
 | |
| void CallbackTemplate(u64 userdata, s64 lateness)
 | |
| {
 | |
|   static_assert(IDX < CB_IDS.size(), "IDX out of range");
 | |
|   s_callbacks_ran_flags.set(IDX);
 | |
|   EXPECT_EQ(CB_IDS[IDX], userdata);
 | |
|   EXPECT_EQ(CB_IDS[IDX], s_expected_callback);
 | |
|   EXPECT_EQ(s_lateness, lateness);
 | |
| }
 | |
| 
 | |
| class ScopeInit final
 | |
| {
 | |
| public:
 | |
|   ScopeInit() : m_profile_path(File::CreateTempDir())
 | |
|   {
 | |
|     if (!UserDirectoryExists())
 | |
|     {
 | |
|       return;
 | |
|     }
 | |
|     Core::DeclareAsCPUThread();
 | |
|     UICommon::SetUserDirectory(m_profile_path);
 | |
|     Config::Init();
 | |
|     SConfig::Init();
 | |
|     PowerPC::Init(PowerPC::CPUCore::Interpreter);
 | |
|     CoreTiming::Init();
 | |
|   }
 | |
|   ~ScopeInit()
 | |
|   {
 | |
|     if (!UserDirectoryExists())
 | |
|     {
 | |
|       return;
 | |
|     }
 | |
|     CoreTiming::Shutdown();
 | |
|     PowerPC::Shutdown();
 | |
|     SConfig::Shutdown();
 | |
|     Config::Shutdown();
 | |
|     Core::UndeclareAsCPUThread();
 | |
|     File::DeleteDirRecursively(m_profile_path);
 | |
|   }
 | |
|   bool UserDirectoryExists() const { return !m_profile_path.empty(); }
 | |
| 
 | |
| private:
 | |
|   std::string m_profile_path;
 | |
| };
 | |
| 
 | |
| static void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0,
 | |
|                             int cpu_downcount = 0)
 | |
| {
 | |
|   s_callbacks_ran_flags = 0;
 | |
|   s_expected_callback = CB_IDS[idx];
 | |
|   s_lateness = expected_lateness;
 | |
| 
 | |
|   PowerPC::ppcState.downcount = cpu_downcount;  // Pretend we executed X cycles of instructions.
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags);
 | |
|   EXPECT_EQ(downcount, PowerPC::ppcState.downcount);
 | |
| }
 | |
| 
 | |
| TEST(CoreTiming, BasicOrder)
 | |
| {
 | |
|   ScopeInit guard;
 | |
|   ASSERT_TRUE(guard.UserDirectoryExists());
 | |
| 
 | |
|   CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | |
|   CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | |
|   CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
 | |
|   CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
 | |
|   CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
 | |
| 
 | |
|   // Enter slice 0
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   // D -> B -> C -> A -> E
 | |
|   CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
 | |
|   EXPECT_EQ(1000, PowerPC::ppcState.downcount);
 | |
|   CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]);
 | |
|   EXPECT_EQ(500, PowerPC::ppcState.downcount);
 | |
|   CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]);
 | |
|   EXPECT_EQ(500, PowerPC::ppcState.downcount);
 | |
|   CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]);
 | |
|   EXPECT_EQ(100, PowerPC::ppcState.downcount);
 | |
|   CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]);
 | |
|   EXPECT_EQ(100, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   AdvanceAndCheck(3, 400);
 | |
|   AdvanceAndCheck(1, 300);
 | |
|   AdvanceAndCheck(2, 200);
 | |
|   AdvanceAndCheck(0, 200);
 | |
|   AdvanceAndCheck(4, MAX_SLICE_LENGTH);
 | |
| }
 | |
| 
 | |
| namespace SharedSlotTest
 | |
| {
 | |
| static unsigned int s_counter = 0;
 | |
| 
 | |
| template <unsigned int ID>
 | |
| void FifoCallback(u64 userdata, s64 lateness)
 | |
| {
 | |
|   static_assert(ID < CB_IDS.size(), "ID out of range");
 | |
|   s_callbacks_ran_flags.set(ID);
 | |
|   EXPECT_EQ(CB_IDS[ID], userdata);
 | |
|   EXPECT_EQ(ID, s_counter);
 | |
|   EXPECT_EQ(s_lateness, lateness);
 | |
|   ++s_counter;
 | |
| }
 | |
| }  // namespace SharedSlotTest
 | |
| 
 | |
| TEST(CoreTiming, SharedSlot)
 | |
| {
 | |
|   using namespace SharedSlotTest;
 | |
| 
 | |
|   ScopeInit guard;
 | |
|   ASSERT_TRUE(guard.UserDirectoryExists());
 | |
| 
 | |
|   CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>);
 | |
|   CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>);
 | |
|   CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>);
 | |
|   CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>);
 | |
|   CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>);
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
 | |
|   CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
 | |
|   CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]);
 | |
|   CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]);
 | |
|   CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]);
 | |
| 
 | |
|   // Enter slice 0
 | |
|   CoreTiming::Advance();
 | |
|   EXPECT_EQ(1000, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   s_callbacks_ran_flags = 0;
 | |
|   s_counter = 0;
 | |
|   s_lateness = 0;
 | |
|   PowerPC::ppcState.downcount = 0;
 | |
|   CoreTiming::Advance();
 | |
|   EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
 | |
|   EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong());
 | |
| }
 | |
| 
 | |
| TEST(CoreTiming, PredictableLateness)
 | |
| {
 | |
|   ScopeInit guard;
 | |
|   ASSERT_TRUE(guard.UserDirectoryExists());
 | |
| 
 | |
|   CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | |
|   CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | |
| 
 | |
|   // Enter slice 0
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | |
|   CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | |
| 
 | |
|   AdvanceAndCheck(0, 90, 10, -10);  // (100 - 10)
 | |
|   AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50);
 | |
| }
 | |
| 
 | |
| namespace ChainSchedulingTest
 | |
| {
 | |
| static int s_reschedules = 0;
 | |
| 
 | |
| static void RescheduleCallback(u64 userdata, s64 lateness)
 | |
| {
 | |
|   --s_reschedules;
 | |
|   EXPECT_TRUE(s_reschedules >= 0);
 | |
|   EXPECT_EQ(s_lateness, lateness);
 | |
| 
 | |
|   if (s_reschedules > 0)
 | |
|     CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata), userdata);
 | |
| }
 | |
| }  // namespace ChainSchedulingTest
 | |
| 
 | |
| TEST(CoreTiming, ChainScheduling)
 | |
| {
 | |
|   using namespace ChainSchedulingTest;
 | |
| 
 | |
|   ScopeInit guard;
 | |
|   ASSERT_TRUE(guard.UserDirectoryExists());
 | |
| 
 | |
|   CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | |
|   CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | |
|   CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
 | |
|   CoreTiming::EventType* cb_rs =
 | |
|       CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback);
 | |
| 
 | |
|   // Enter slice 0
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]);
 | |
|   CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
 | |
|   CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]);
 | |
|   CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
 | |
|   EXPECT_EQ(800, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   s_reschedules = 3;
 | |
|   AdvanceAndCheck(0, 200);   // cb_a
 | |
|   AdvanceAndCheck(1, 1000);  // cb_b, cb_rs
 | |
|   EXPECT_EQ(2, s_reschedules);
 | |
| 
 | |
|   PowerPC::ppcState.downcount = 0;
 | |
|   CoreTiming::Advance();  // cb_rs
 | |
|   EXPECT_EQ(1, s_reschedules);
 | |
|   EXPECT_EQ(200, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   AdvanceAndCheck(2, 800);  // cb_c
 | |
| 
 | |
|   PowerPC::ppcState.downcount = 0;
 | |
|   CoreTiming::Advance();  // cb_rs
 | |
|   EXPECT_EQ(0, s_reschedules);
 | |
|   EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
 | |
| }
 | |
| 
 | |
| namespace ScheduleIntoPastTest
 | |
| {
 | |
| static CoreTiming::EventType* s_cb_next = nullptr;
 | |
| 
 | |
| static void ChainCallback(u64 userdata, s64 lateness)
 | |
| {
 | |
|   EXPECT_EQ(CB_IDS[0] + 1, userdata);
 | |
|   EXPECT_EQ(0, lateness);
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(-1000, s_cb_next, userdata - 1);
 | |
| }
 | |
| }  // namespace ScheduleIntoPastTest
 | |
| 
 | |
| // This can happen when scheduling from outside the CPU Thread.
 | |
| // Also, if the callback is very late, it may reschedule itself for the next period which
 | |
| // is also in the past.
 | |
| TEST(CoreTiming, ScheduleIntoPast)
 | |
| {
 | |
|   using namespace ScheduleIntoPastTest;
 | |
| 
 | |
|   ScopeInit guard;
 | |
|   ASSERT_TRUE(guard.UserDirectoryExists());
 | |
| 
 | |
|   s_cb_next = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | |
|   CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | |
|   CoreTiming::EventType* cb_chain = CoreTiming::RegisterEvent("callbackChain", ChainCallback);
 | |
| 
 | |
|   // Enter slice 0
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1);
 | |
|   EXPECT_EQ(1000, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000);  // Run cb_chain into late cb_a
 | |
| 
 | |
|   // Schedule late from wrong thread
 | |
|   // The problem with scheduling CPU events from outside the CPU Thread is that g_global_timer
 | |
|   // is not reliable outside the CPU Thread. It's possible for the other thread to sample the
 | |
|   // global timer right before the timer is updated by Advance() then submit a new event using
 | |
|   // the stale value, i.e. effectively half-way through the previous slice.
 | |
|   // NOTE: We're only testing that the scheduler doesn't break, not whether this makes sense.
 | |
|   Core::UndeclareAsCPUThread();
 | |
|   CoreTiming::g.global_timer -= 1000;
 | |
|   CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU);
 | |
|   CoreTiming::g.global_timer += 1000;
 | |
|   Core::DeclareAsCPUThread();
 | |
|   AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000);
 | |
| 
 | |
|   // Schedule directly into the past from the CPU.
 | |
|   // This shouldn't happen in practice, but it's best if we don't mess up the slice length and
 | |
|   // downcount if we do.
 | |
|   CoreTiming::ScheduleEvent(-1000, s_cb_next, CB_IDS[0]);
 | |
|   EXPECT_EQ(0, PowerPC::ppcState.downcount);
 | |
|   AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000);
 | |
| }
 | |
| 
 | |
| TEST(CoreTiming, Overclocking)
 | |
| {
 | |
|   ScopeInit guard;
 | |
|   ASSERT_TRUE(guard.UserDirectoryExists());
 | |
| 
 | |
|   CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | |
|   CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | |
|   CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
 | |
|   CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
 | |
|   CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
 | |
| 
 | |
|   // Overclock
 | |
|   SConfig::GetInstance().m_OCEnable = true;
 | |
|   SConfig::GetInstance().m_OCFactor = 2.0;
 | |
| 
 | |
|   // Enter slice 0
 | |
|   // Updates s_last_OC_factor.
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | |
|   CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | |
|   CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
 | |
|   CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
 | |
|   CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
 | |
|   EXPECT_EQ(200, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   AdvanceAndCheck(0, 200);   // (200 - 100) * 2
 | |
|   AdvanceAndCheck(1, 400);   // (400 - 200) * 2
 | |
|   AdvanceAndCheck(2, 800);   // (800 - 400) * 2
 | |
|   AdvanceAndCheck(3, 1600);  // (1600 - 800) * 2
 | |
|   AdvanceAndCheck(4, MAX_SLICE_LENGTH * 2);
 | |
| 
 | |
|   // Underclock
 | |
|   SConfig::GetInstance().m_OCFactor = 0.5;
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | |
|   CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | |
|   CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
 | |
|   CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
 | |
|   CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
 | |
|   EXPECT_EQ(50, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   AdvanceAndCheck(0, 50);   // (200 - 100) / 2
 | |
|   AdvanceAndCheck(1, 100);  // (400 - 200) / 2
 | |
|   AdvanceAndCheck(2, 200);  // (800 - 400) / 2
 | |
|   AdvanceAndCheck(3, 400);  // (1600 - 800) / 2
 | |
|   AdvanceAndCheck(4, MAX_SLICE_LENGTH / 2);
 | |
| 
 | |
|   // Try switching the clock mid-emulation
 | |
|   SConfig::GetInstance().m_OCFactor = 1.0;
 | |
|   CoreTiming::Advance();
 | |
| 
 | |
|   CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | |
|   CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | |
|   CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
 | |
|   CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
 | |
|   CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
 | |
|   EXPECT_EQ(100, PowerPC::ppcState.downcount);
 | |
| 
 | |
|   AdvanceAndCheck(0, 100);  // (200 - 100)
 | |
|   SConfig::GetInstance().m_OCFactor = 2.0;
 | |
|   AdvanceAndCheck(1, 400);  // (400 - 200) * 2
 | |
|   AdvanceAndCheck(2, 800);  // (800 - 400) * 2
 | |
|   SConfig::GetInstance().m_OCFactor = 0.1f;
 | |
|   AdvanceAndCheck(3, 80);  // (1600 - 800) / 10
 | |
|   SConfig::GetInstance().m_OCFactor = 1.0;
 | |
|   AdvanceAndCheck(4, MAX_SLICE_LENGTH);
 | |
| }
 |