mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-27 10:29:07 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			240 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2008 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <cstdlib>
 | |
| #include <vector>
 | |
| 
 | |
| #include "Common/CommonTypes.h"
 | |
| 
 | |
| namespace MathUtil
 | |
| {
 | |
| template<class T>
 | |
| inline void Clamp(T* val, const T& min, const T& max)
 | |
| {
 | |
| 	if (*val < min)
 | |
| 		*val = min;
 | |
| 	else if (*val > max)
 | |
| 		*val = max;
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| inline T Clamp(const T val, const T& min, const T& max)
 | |
| {
 | |
| 	T ret = val;
 | |
| 	Clamp(&ret, min, max);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| // The most significant bit of the fraction is an is-quiet bit on all architectures we care about.
 | |
| 
 | |
| static const u64 DOUBLE_SIGN = 0x8000000000000000ULL,
 | |
|                  DOUBLE_EXP  = 0x7FF0000000000000ULL,
 | |
|                  DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL,
 | |
|                  DOUBLE_ZERO = 0x0000000000000000ULL,
 | |
|                  DOUBLE_QBIT = 0x0008000000000000ULL;
 | |
| 
 | |
| static const u32 FLOAT_SIGN = 0x80000000,
 | |
|                  FLOAT_EXP  = 0x7F800000,
 | |
|                  FLOAT_FRAC = 0x007FFFFF,
 | |
|                  FLOAT_ZERO = 0x00000000;
 | |
| 
 | |
| union IntDouble {
 | |
| 	double d;
 | |
| 	u64 i;
 | |
| 
 | |
| 	explicit IntDouble(u64 _i) : i(_i) {}
 | |
| 	explicit IntDouble(double _d) : d(_d) {}
 | |
| };
 | |
| union IntFloat {
 | |
| 	float f;
 | |
| 	u32 i;
 | |
| 
 | |
| 	explicit IntFloat(u32 _i) : i(_i) {}
 | |
| 	explicit IntFloat(float _f) : f(_f) {}
 | |
| };
 | |
| 
 | |
| inline bool IsINF(double d)
 | |
| {
 | |
| 	IntDouble x(d);
 | |
| 	return (x.i & ~DOUBLE_SIGN) == DOUBLE_EXP;
 | |
| }
 | |
| 
 | |
| inline bool IsNAN(double d)
 | |
| {
 | |
| 	IntDouble x(d);
 | |
| 	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
 | |
| 	       ((x.i & DOUBLE_FRAC) != DOUBLE_ZERO);
 | |
| }
 | |
| 
 | |
| inline bool IsQNAN(double d)
 | |
| {
 | |
| 	IntDouble x(d);
 | |
| 	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
 | |
| 	       ((x.i & DOUBLE_QBIT) == DOUBLE_QBIT);
 | |
| }
 | |
| 
 | |
| inline bool IsSNAN(double d)
 | |
| {
 | |
| 	IntDouble x(d);
 | |
| 	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
 | |
| 	       ((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) &&
 | |
| 	       ((x.i & DOUBLE_QBIT) == DOUBLE_ZERO);
 | |
| }
 | |
| 
 | |
| inline float FlushToZero(float f)
 | |
| {
 | |
| 	IntFloat x(f);
 | |
| 	if ((x.i & FLOAT_EXP) == 0)
 | |
| 	{
 | |
| 		x.i &= FLOAT_SIGN;  // turn into signed zero
 | |
| 	}
 | |
| 	return x.f;
 | |
| }
 | |
| 
 | |
| inline double FlushToZero(double d)
 | |
| {
 | |
| 	IntDouble x(d);
 | |
| 	if ((x.i & DOUBLE_EXP) == 0)
 | |
| 	{
 | |
| 		x.i &= DOUBLE_SIGN;  // turn into signed zero
 | |
| 	}
 | |
| 	return x.d;
 | |
| }
 | |
| 
 | |
| enum PPCFpClass
 | |
| {
 | |
| 	PPC_FPCLASS_QNAN = 0x11,
 | |
| 	PPC_FPCLASS_NINF = 0x9,
 | |
| 	PPC_FPCLASS_NN   = 0x8,
 | |
| 	PPC_FPCLASS_ND   = 0x18,
 | |
| 	PPC_FPCLASS_NZ   = 0x12,
 | |
| 	PPC_FPCLASS_PZ   = 0x2,
 | |
| 	PPC_FPCLASS_PD   = 0x14,
 | |
| 	PPC_FPCLASS_PN   = 0x4,
 | |
| 	PPC_FPCLASS_PINF = 0x5,
 | |
| };
 | |
| 
 | |
| // Uses PowerPC conventions for the return value, so it can be easily
 | |
| // used directly in CPU emulation.
 | |
| u32 ClassifyDouble(double dvalue);
 | |
| // More efficient float version.
 | |
| u32 ClassifyFloat(float fvalue);
 | |
| 
 | |
| extern const int frsqrte_expected_base[];
 | |
| extern const int frsqrte_expected_dec[];
 | |
| extern const int fres_expected_base[];
 | |
| extern const int fres_expected_dec[];
 | |
| 
 | |
| // PowerPC approximation algorithms
 | |
| double ApproximateReciprocalSquareRoot(double val);
 | |
| double ApproximateReciprocal(double val);
 | |
| 
 | |
| template<class T>
 | |
| struct Rectangle
 | |
| {
 | |
| 	T left;
 | |
| 	T top;
 | |
| 	T right;
 | |
| 	T bottom;
 | |
| 
 | |
| 	Rectangle()
 | |
| 	{ }
 | |
| 
 | |
| 	Rectangle(T theLeft, T theTop, T theRight, T theBottom)
 | |
| 		: left(theLeft), top(theTop), right(theRight), bottom(theBottom)
 | |
| 	{ }
 | |
| 
 | |
| 	bool operator==(const Rectangle& r) { return left==r.left && top==r.top && right==r.right && bottom==r.bottom; }
 | |
| 
 | |
| 	T GetWidth() const { return abs(right - left); }
 | |
| 	T GetHeight() const { return abs(bottom - top); }
 | |
| 
 | |
| 	// If the rectangle is in a coordinate system with a lower-left origin, use
 | |
| 	// this Clamp.
 | |
| 	void ClampLL(T x1, T y1, T x2, T y2)
 | |
| 	{
 | |
| 		Clamp(&left, x1, x2);
 | |
| 		Clamp(&right, x1, x2);
 | |
| 		Clamp(&top, y2, y1);
 | |
| 		Clamp(&bottom, y2, y1);
 | |
| 	}
 | |
| 
 | |
| 	// If the rectangle is in a coordinate system with an upper-left origin,
 | |
| 	// use this Clamp.
 | |
| 	void ClampUL(T x1, T y1, T x2, T y2)
 | |
| 	{
 | |
| 		Clamp(&left, x1, x2);
 | |
| 		Clamp(&right, x1, x2);
 | |
| 		Clamp(&top, y1, y2);
 | |
| 		Clamp(&bottom, y1, y2);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| }  // namespace MathUtil
 | |
| 
 | |
| float MathFloatVectorSum(const std::vector<float>&);
 | |
| 
 | |
| #define ROUND_UP(x, a)   (((x) + (a) - 1) & ~((a) - 1))
 | |
| #define ROUND_DOWN(x, a) ((x) & ~((a) - 1))
 | |
| 
 | |
| inline bool IsPow2(u32 imm) {return (imm & (imm - 1)) == 0;}
 | |
| 
 | |
| // Rounds down. 0 -> undefined
 | |
| inline int IntLog2(u64 val)
 | |
| {
 | |
| #if defined(__GNUC__)
 | |
| 	return 63 - __builtin_clzll(val);
 | |
| 
 | |
| #elif defined(_MSC_VER)
 | |
| 	unsigned long result = -1;
 | |
| 	_BitScanReverse64(&result, val);
 | |
| 	return result;
 | |
| 
 | |
| #else
 | |
| 	int result = -1;
 | |
| 	while (val != 0)
 | |
| 	{
 | |
| 		val >>= 1;
 | |
| 		++result;
 | |
| 	}
 | |
| 	return result;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Tiny matrix/vector library.
 | |
| // Used for things like Free-Look in the gfx backend.
 | |
| 
 | |
| class Matrix33
 | |
| {
 | |
| public:
 | |
| 	static void LoadIdentity(Matrix33 &mtx);
 | |
| 
 | |
| 	// set mtx to be a rotation matrix around the x axis
 | |
| 	static void RotateX(Matrix33 &mtx, float rad);
 | |
| 	// set mtx to be a rotation matrix around the y axis
 | |
| 	static void RotateY(Matrix33 &mtx, float rad);
 | |
| 
 | |
| 	// set result = a x b
 | |
| 	static void Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result);
 | |
| 	static void Multiply(const Matrix33 &a, const float vec[3], float result[3]);
 | |
| 
 | |
| 	float data[9];
 | |
| };
 | |
| 
 | |
| class Matrix44
 | |
| {
 | |
| public:
 | |
| 	static void LoadIdentity(Matrix44 &mtx);
 | |
| 	static void LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33);
 | |
| 	static void Set(Matrix44 &mtx, const float mtxArray[16]);
 | |
| 
 | |
| 	static void Translate(Matrix44 &mtx, const float vec[3]);
 | |
| 	static void Shear(Matrix44 &mtx, const float a, const float b = 0);
 | |
| 
 | |
| 	static void Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result);
 | |
| 
 | |
| 	float data[16];
 | |
| };
 |