mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-25 01:19:19 +00:00 
			
		
		
		
	BreakBeforeBraces: Allman apparently includes all styles, except for AfterUnion (which is false) when using clang-format -dump-config
		
			
				
	
	
		
			240 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2008 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstdlib>
 | |
| #include <vector>
 | |
| 
 | |
| #include "Common/CommonTypes.h"
 | |
| 
 | |
| namespace MathUtil
 | |
| {
 | |
| template <typename T>
 | |
| constexpr T SNANConstant()
 | |
| {
 | |
|   return std::numeric_limits<T>::signaling_NaN();
 | |
| }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 
 | |
| // MSVC needs a workaround, because its std::numeric_limits<double>::signaling_NaN()
 | |
| // will use __builtin_nans, which is improperly handled by the compiler and generates
 | |
| // a bad constant. Here we go back to the version MSVC used before the builtin.
 | |
| // TODO: Remove this and use numeric_limits directly whenever this bug is fixed.
 | |
| template <>
 | |
| constexpr double SNANConstant()
 | |
| {
 | |
|   return (_CSTD _Snan._Double);
 | |
| }
 | |
| template <>
 | |
| constexpr float SNANConstant()
 | |
| {
 | |
|   return (_CSTD _Snan._Float);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| template <class T>
 | |
| constexpr T Clamp(const T val, const T& min, const T& max)
 | |
| {
 | |
|   return std::max(min, std::min(max, val));
 | |
| }
 | |
| 
 | |
| constexpr bool IsPow2(u32 imm)
 | |
| {
 | |
|   return (imm & (imm - 1)) == 0;
 | |
| }
 | |
| 
 | |
| // The most significant bit of the fraction is an is-quiet bit on all architectures we care about.
 | |
| 
 | |
| static const u64 DOUBLE_SIGN = 0x8000000000000000ULL, DOUBLE_EXP = 0x7FF0000000000000ULL,
 | |
|                  DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL, DOUBLE_ZERO = 0x0000000000000000ULL,
 | |
|                  DOUBLE_QBIT = 0x0008000000000000ULL;
 | |
| 
 | |
| static const u32 FLOAT_SIGN = 0x80000000, FLOAT_EXP = 0x7F800000, FLOAT_FRAC = 0x007FFFFF,
 | |
|                  FLOAT_ZERO = 0x00000000;
 | |
| 
 | |
| union IntDouble
 | |
| {
 | |
|   double d;
 | |
|   u64 i;
 | |
| 
 | |
|   explicit IntDouble(u64 _i) : i(_i) {}
 | |
|   explicit IntDouble(double _d) : d(_d) {}
 | |
| };
 | |
| union IntFloat
 | |
| {
 | |
|   float f;
 | |
|   u32 i;
 | |
| 
 | |
|   explicit IntFloat(u32 _i) : i(_i) {}
 | |
|   explicit IntFloat(float _f) : f(_f) {}
 | |
| };
 | |
| 
 | |
| inline bool IsQNAN(double d)
 | |
| {
 | |
|   IntDouble x(d);
 | |
|   return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) && ((x.i & DOUBLE_QBIT) == DOUBLE_QBIT);
 | |
| }
 | |
| 
 | |
| inline bool IsSNAN(double d)
 | |
| {
 | |
|   IntDouble x(d);
 | |
|   return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) && ((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) &&
 | |
|          ((x.i & DOUBLE_QBIT) == DOUBLE_ZERO);
 | |
| }
 | |
| 
 | |
| inline float FlushToZero(float f)
 | |
| {
 | |
|   IntFloat x(f);
 | |
|   if ((x.i & FLOAT_EXP) == 0)
 | |
|   {
 | |
|     x.i &= FLOAT_SIGN;  // turn into signed zero
 | |
|   }
 | |
|   return x.f;
 | |
| }
 | |
| 
 | |
| inline double FlushToZero(double d)
 | |
| {
 | |
|   IntDouble x(d);
 | |
|   if ((x.i & DOUBLE_EXP) == 0)
 | |
|   {
 | |
|     x.i &= DOUBLE_SIGN;  // turn into signed zero
 | |
|   }
 | |
|   return x.d;
 | |
| }
 | |
| 
 | |
| enum PPCFpClass
 | |
| {
 | |
|   PPC_FPCLASS_QNAN = 0x11,
 | |
|   PPC_FPCLASS_NINF = 0x9,
 | |
|   PPC_FPCLASS_NN = 0x8,
 | |
|   PPC_FPCLASS_ND = 0x18,
 | |
|   PPC_FPCLASS_NZ = 0x12,
 | |
|   PPC_FPCLASS_PZ = 0x2,
 | |
|   PPC_FPCLASS_PD = 0x14,
 | |
|   PPC_FPCLASS_PN = 0x4,
 | |
|   PPC_FPCLASS_PINF = 0x5,
 | |
| };
 | |
| 
 | |
| // Uses PowerPC conventions for the return value, so it can be easily
 | |
| // used directly in CPU emulation.
 | |
| u32 ClassifyDouble(double dvalue);
 | |
| // More efficient float version.
 | |
| u32 ClassifyFloat(float fvalue);
 | |
| 
 | |
| extern const int frsqrte_expected_base[];
 | |
| extern const int frsqrte_expected_dec[];
 | |
| extern const int fres_expected_base[];
 | |
| extern const int fres_expected_dec[];
 | |
| 
 | |
| // PowerPC approximation algorithms
 | |
| double ApproximateReciprocalSquareRoot(double val);
 | |
| double ApproximateReciprocal(double val);
 | |
| 
 | |
| template <class T>
 | |
| struct Rectangle
 | |
| {
 | |
|   T left{};
 | |
|   T top{};
 | |
|   T right{};
 | |
|   T bottom{};
 | |
| 
 | |
|   constexpr Rectangle() = default;
 | |
| 
 | |
|   constexpr Rectangle(T theLeft, T theTop, T theRight, T theBottom)
 | |
|       : left(theLeft), top(theTop), right(theRight), bottom(theBottom)
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   constexpr bool operator==(const Rectangle& r) const
 | |
|   {
 | |
|     return left == r.left && top == r.top && right == r.right && bottom == r.bottom;
 | |
|   }
 | |
| 
 | |
|   T GetWidth() const { return abs(right - left); }
 | |
|   T GetHeight() const { return abs(bottom - top); }
 | |
|   // If the rectangle is in a coordinate system with a lower-left origin, use
 | |
|   // this Clamp.
 | |
|   void ClampLL(T x1, T y1, T x2, T y2)
 | |
|   {
 | |
|     left = Clamp(left, x1, x2);
 | |
|     right = Clamp(right, x1, x2);
 | |
|     top = Clamp(top, y2, y1);
 | |
|     bottom = Clamp(bottom, y2, y1);
 | |
|   }
 | |
| 
 | |
|   // If the rectangle is in a coordinate system with an upper-left origin,
 | |
|   // use this Clamp.
 | |
|   void ClampUL(T x1, T y1, T x2, T y2)
 | |
|   {
 | |
|     left = Clamp(left, x1, x2);
 | |
|     right = Clamp(right, x1, x2);
 | |
|     top = Clamp(top, y1, y2);
 | |
|     bottom = Clamp(bottom, y1, y2);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace MathUtil
 | |
| 
 | |
| float MathFloatVectorSum(const std::vector<float>&);
 | |
| 
 | |
| // Rounds down. 0 -> undefined
 | |
| inline int IntLog2(u64 val)
 | |
| {
 | |
| #if defined(__GNUC__)
 | |
|   return 63 - __builtin_clzll(val);
 | |
| 
 | |
| #elif defined(_MSC_VER)
 | |
|   unsigned long result = -1;
 | |
|   _BitScanReverse64(&result, val);
 | |
|   return result;
 | |
| 
 | |
| #else
 | |
|   int result = -1;
 | |
|   while (val != 0)
 | |
|   {
 | |
|     val >>= 1;
 | |
|     ++result;
 | |
|   }
 | |
|   return result;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Tiny matrix/vector library.
 | |
| // Used for things like Free-Look in the gfx backend.
 | |
| 
 | |
| class Matrix33
 | |
| {
 | |
| public:
 | |
|   static void LoadIdentity(Matrix33& mtx);
 | |
| 
 | |
|   // set mtx to be a rotation matrix around the x axis
 | |
|   static void RotateX(Matrix33& mtx, float rad);
 | |
|   // set mtx to be a rotation matrix around the y axis
 | |
|   static void RotateY(Matrix33& mtx, float rad);
 | |
| 
 | |
|   // set result = a x b
 | |
|   static void Multiply(const Matrix33& a, const Matrix33& b, Matrix33& result);
 | |
|   static void Multiply(const Matrix33& a, const float vec[3], float result[3]);
 | |
| 
 | |
|   float data[9];
 | |
| };
 | |
| 
 | |
| class Matrix44
 | |
| {
 | |
| public:
 | |
|   static void LoadIdentity(Matrix44& mtx);
 | |
|   static void LoadMatrix33(Matrix44& mtx, const Matrix33& m33);
 | |
|   static void Set(Matrix44& mtx, const float mtxArray[16]);
 | |
| 
 | |
|   static void Translate(Matrix44& mtx, const float vec[3]);
 | |
|   static void Shear(Matrix44& mtx, const float a, const float b = 0);
 | |
| 
 | |
|   static void Multiply(const Matrix44& a, const Matrix44& b, Matrix44& result);
 | |
| 
 | |
|   float data[16];
 | |
| };
 |