mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-25 09:29:43 +00:00 
			
		
		
		
	SPDX standardizes how source code conveys its copyright and licensing information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX tags are adopted in many large projects, including things like the Linux kernel.
		
			
				
	
	
		
			469 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			469 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009 Dolphin Emulator Project
 | |
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| 
 | |
| #include "VideoBackends/Software/Rasterizer.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstring>
 | |
| 
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "VideoBackends/Software/EfbInterface.h"
 | |
| #include "VideoBackends/Software/NativeVertexFormat.h"
 | |
| #include "VideoBackends/Software/Tev.h"
 | |
| #include "VideoCommon/PerfQueryBase.h"
 | |
| #include "VideoCommon/Statistics.h"
 | |
| #include "VideoCommon/VideoCommon.h"
 | |
| #include "VideoCommon/VideoConfig.h"
 | |
| #include "VideoCommon/XFMemory.h"
 | |
| 
 | |
| namespace Rasterizer
 | |
| {
 | |
| static constexpr int BLOCK_SIZE = 2;
 | |
| 
 | |
| static Slope ZSlope;
 | |
| static Slope WSlope;
 | |
| static Slope ColorSlopes[2][4];
 | |
| static Slope TexSlopes[8][3];
 | |
| 
 | |
| static s32 vertex0X;
 | |
| static s32 vertex0Y;
 | |
| static float vertexOffsetX;
 | |
| static float vertexOffsetY;
 | |
| 
 | |
| static Tev tev;
 | |
| static RasterBlock rasterBlock;
 | |
| 
 | |
| void Init()
 | |
| {
 | |
|   tev.Init();
 | |
| 
 | |
|   // Set initial z reference plane in the unlikely case that zfreeze is enabled when drawing the
 | |
|   // first primitive.
 | |
|   // TODO: This is just a guess!
 | |
|   ZSlope.dfdx = ZSlope.dfdy = 0.f;
 | |
|   ZSlope.f0 = 1.f;
 | |
| }
 | |
| 
 | |
| // Returns approximation of log2(f) in s28.4
 | |
| // results are close enough to use for LOD
 | |
| static s32 FixedLog2(float f)
 | |
| {
 | |
|   u32 x;
 | |
|   std::memcpy(&x, &f, sizeof(u32));
 | |
| 
 | |
|   s32 logInt = ((x & 0x7F800000) >> 19) - 2032;  // integer part
 | |
|   s32 logFract = (x & 0x007fffff) >> 19;         // approximate fractional part
 | |
| 
 | |
|   return logInt + logFract;
 | |
| }
 | |
| 
 | |
| static inline int iround(float x)
 | |
| {
 | |
|   int t = (int)x;
 | |
|   if ((x - t) >= 0.5)
 | |
|     return t + 1;
 | |
| 
 | |
|   return t;
 | |
| }
 | |
| 
 | |
| void SetTevReg(int reg, int comp, s16 color)
 | |
| {
 | |
|   tev.SetRegColor(reg, comp, color);
 | |
| }
 | |
| 
 | |
| static void Draw(s32 x, s32 y, s32 xi, s32 yi)
 | |
| {
 | |
|   INCSTAT(g_stats.this_frame.rasterized_pixels);
 | |
| 
 | |
|   float dx = vertexOffsetX + (float)(x - vertex0X);
 | |
|   float dy = vertexOffsetY + (float)(y - vertex0Y);
 | |
| 
 | |
|   s32 z = (s32)std::clamp<float>(ZSlope.GetValue(dx, dy), 0.0f, 16777215.0f);
 | |
| 
 | |
|   if (bpmem.UseEarlyDepthTest() && g_ActiveConfig.bZComploc)
 | |
|   {
 | |
|     // TODO: Test if perf regs are incremented even if test is disabled
 | |
|     EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT_ZCOMPLOC);
 | |
|     if (bpmem.zmode.testenable)
 | |
|     {
 | |
|       // early z
 | |
|       if (!EfbInterface::ZCompare(x, y, z))
 | |
|         return;
 | |
|     }
 | |
|     EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT_ZCOMPLOC);
 | |
|   }
 | |
| 
 | |
|   RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi];
 | |
| 
 | |
|   tev.Position[0] = x;
 | |
|   tev.Position[1] = y;
 | |
|   tev.Position[2] = z;
 | |
| 
 | |
|   //  colors
 | |
|   for (unsigned int i = 0; i < bpmem.genMode.numcolchans; i++)
 | |
|   {
 | |
|     for (int comp = 0; comp < 4; comp++)
 | |
|     {
 | |
|       u16 color = (u16)ColorSlopes[i][comp].GetValue(dx, dy);
 | |
| 
 | |
|       // clamp color value to 0
 | |
|       u16 mask = ~(color >> 8);
 | |
| 
 | |
|       tev.Color[i][comp] = color & mask;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // tex coords
 | |
|   for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++)
 | |
|   {
 | |
|     // multiply by 128 because TEV stores UVs as s17.7
 | |
|     tev.Uv[i].s = (s32)(pixel.Uv[i][0] * 128);
 | |
|     tev.Uv[i].t = (s32)(pixel.Uv[i][1] * 128);
 | |
|   }
 | |
| 
 | |
|   for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++)
 | |
|   {
 | |
|     tev.IndirectLod[i] = rasterBlock.IndirectLod[i];
 | |
|     tev.IndirectLinear[i] = rasterBlock.IndirectLinear[i];
 | |
|   }
 | |
| 
 | |
|   for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++)
 | |
|   {
 | |
|     tev.TextureLod[i] = rasterBlock.TextureLod[i];
 | |
|     tev.TextureLinear[i] = rasterBlock.TextureLinear[i];
 | |
|   }
 | |
| 
 | |
|   tev.Draw();
 | |
| }
 | |
| 
 | |
| static void InitTriangle(float X1, float Y1, s32 xi, s32 yi)
 | |
| {
 | |
|   vertex0X = xi;
 | |
|   vertex0Y = yi;
 | |
| 
 | |
|   // adjust a little less than 0.5
 | |
|   const float adjust = 0.495f;
 | |
| 
 | |
|   vertexOffsetX = ((float)xi - X1) + adjust;
 | |
|   vertexOffsetY = ((float)yi - Y1) + adjust;
 | |
| }
 | |
| 
 | |
| static void InitSlope(Slope* slope, float f1, float f2, float f3, float DX31, float DX12,
 | |
|                       float DY12, float DY31)
 | |
| {
 | |
|   float DF31 = f3 - f1;
 | |
|   float DF21 = f2 - f1;
 | |
|   float a = DF31 * -DY12 - DF21 * DY31;
 | |
|   float b = DX31 * DF21 + DX12 * DF31;
 | |
|   float c = -DX12 * DY31 - DX31 * -DY12;
 | |
|   slope->dfdx = -a / c;
 | |
|   slope->dfdy = -b / c;
 | |
|   slope->f0 = f1;
 | |
| }
 | |
| 
 | |
| static inline void CalculateLOD(s32* lodp, bool* linear, u32 texmap, u32 texcoord)
 | |
| {
 | |
|   const FourTexUnits& texUnit = bpmem.tex[(texmap >> 2) & 1];
 | |
|   const u8 subTexmap = texmap & 3;
 | |
| 
 | |
|   // LOD calculation requires data from the texture mode for bias, etc.
 | |
|   // it does not seem to use the actual texture size
 | |
|   const TexMode0& tm0 = texUnit.texMode0[subTexmap];
 | |
|   const TexMode1& tm1 = texUnit.texMode1[subTexmap];
 | |
| 
 | |
|   float sDelta, tDelta;
 | |
|   if (tm0.diag_lod == LODType::Diagonal)
 | |
|   {
 | |
|     float* uv0 = rasterBlock.Pixel[0][0].Uv[texcoord];
 | |
|     float* uv1 = rasterBlock.Pixel[1][1].Uv[texcoord];
 | |
| 
 | |
|     sDelta = fabsf(uv0[0] - uv1[0]);
 | |
|     tDelta = fabsf(uv0[1] - uv1[1]);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     float* uv0 = rasterBlock.Pixel[0][0].Uv[texcoord];
 | |
|     float* uv1 = rasterBlock.Pixel[1][0].Uv[texcoord];
 | |
|     float* uv2 = rasterBlock.Pixel[0][1].Uv[texcoord];
 | |
| 
 | |
|     sDelta = std::max(fabsf(uv0[0] - uv1[0]), fabsf(uv0[0] - uv2[0]));
 | |
|     tDelta = std::max(fabsf(uv0[1] - uv1[1]), fabsf(uv0[1] - uv2[1]));
 | |
|   }
 | |
| 
 | |
|   // get LOD in s28.4
 | |
|   s32 lod = FixedLog2(std::max(sDelta, tDelta));
 | |
| 
 | |
|   // bias is s2.5
 | |
|   int bias = tm0.lod_bias;
 | |
|   bias >>= 1;
 | |
|   lod += bias;
 | |
| 
 | |
|   *linear = ((lod > 0 && tm0.min_filter == FilterMode::Linear) ||
 | |
|              (lod <= 0 && tm0.mag_filter == FilterMode::Linear));
 | |
| 
 | |
|   // NOTE: The order of comparisons for this clamp check matters.
 | |
|   if (lod > static_cast<s32>(tm1.max_lod))
 | |
|     lod = static_cast<s32>(tm1.max_lod);
 | |
|   else if (lod < static_cast<s32>(tm1.min_lod))
 | |
|     lod = static_cast<s32>(tm1.min_lod);
 | |
| 
 | |
|   *lodp = lod;
 | |
| }
 | |
| 
 | |
| static void BuildBlock(s32 blockX, s32 blockY)
 | |
| {
 | |
|   for (s32 yi = 0; yi < BLOCK_SIZE; yi++)
 | |
|   {
 | |
|     for (s32 xi = 0; xi < BLOCK_SIZE; xi++)
 | |
|     {
 | |
|       RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi];
 | |
| 
 | |
|       float dx = vertexOffsetX + (float)(xi + blockX - vertex0X);
 | |
|       float dy = vertexOffsetY + (float)(yi + blockY - vertex0Y);
 | |
| 
 | |
|       float invW = 1.0f / WSlope.GetValue(dx, dy);
 | |
|       pixel.InvW = invW;
 | |
| 
 | |
|       // tex coords
 | |
|       for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++)
 | |
|       {
 | |
|         float projection = invW;
 | |
|         float q = TexSlopes[i][2].GetValue(dx, dy) * invW;
 | |
|         if (q != 0.0f)
 | |
|           projection = invW / q;
 | |
| 
 | |
|         pixel.Uv[i][0] = TexSlopes[i][0].GetValue(dx, dy) * projection;
 | |
|         pixel.Uv[i][1] = TexSlopes[i][1].GetValue(dx, dy) * projection;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   u32 indref = bpmem.tevindref.hex;
 | |
|   for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++)
 | |
|   {
 | |
|     u32 texmap = indref & 3;
 | |
|     indref >>= 3;
 | |
|     u32 texcoord = indref & 3;
 | |
|     indref >>= 3;
 | |
| 
 | |
|     CalculateLOD(&rasterBlock.IndirectLod[i], &rasterBlock.IndirectLinear[i], texmap, texcoord);
 | |
|   }
 | |
| 
 | |
|   for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++)
 | |
|   {
 | |
|     int stageOdd = i & 1;
 | |
|     const TwoTevStageOrders& order = bpmem.tevorders[i >> 1];
 | |
|     if (order.getEnable(stageOdd))
 | |
|     {
 | |
|       u32 texmap = order.getTexMap(stageOdd);
 | |
|       u32 texcoord = order.getTexCoord(stageOdd);
 | |
| 
 | |
|       CalculateLOD(&rasterBlock.TextureLod[i], &rasterBlock.TextureLinear[i], texmap, texcoord);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DrawTriangleFrontFace(const OutputVertexData* v0, const OutputVertexData* v1,
 | |
|                            const OutputVertexData* v2)
 | |
| {
 | |
|   INCSTAT(g_stats.this_frame.num_triangles_drawn);
 | |
| 
 | |
|   // adapted from http://devmaster.net/posts/6145/advanced-rasterization
 | |
| 
 | |
|   // 28.4 fixed-pou32 coordinates. rounded to nearest and adjusted to match hardware output
 | |
|   // could also take floor and adjust -8
 | |
|   const s32 Y1 = iround(16.0f * v0->screenPosition[1]) - 9;
 | |
|   const s32 Y2 = iround(16.0f * v1->screenPosition[1]) - 9;
 | |
|   const s32 Y3 = iround(16.0f * v2->screenPosition[1]) - 9;
 | |
| 
 | |
|   const s32 X1 = iround(16.0f * v0->screenPosition[0]) - 9;
 | |
|   const s32 X2 = iround(16.0f * v1->screenPosition[0]) - 9;
 | |
|   const s32 X3 = iround(16.0f * v2->screenPosition[0]) - 9;
 | |
| 
 | |
|   // Deltas
 | |
|   const s32 DX12 = X1 - X2;
 | |
|   const s32 DX23 = X2 - X3;
 | |
|   const s32 DX31 = X3 - X1;
 | |
| 
 | |
|   const s32 DY12 = Y1 - Y2;
 | |
|   const s32 DY23 = Y2 - Y3;
 | |
|   const s32 DY31 = Y3 - Y1;
 | |
| 
 | |
|   // Fixed-pos32 deltas
 | |
|   const s32 FDX12 = DX12 * 16;
 | |
|   const s32 FDX23 = DX23 * 16;
 | |
|   const s32 FDX31 = DX31 * 16;
 | |
| 
 | |
|   const s32 FDY12 = DY12 * 16;
 | |
|   const s32 FDY23 = DY23 * 16;
 | |
|   const s32 FDY31 = DY31 * 16;
 | |
| 
 | |
|   // Bounding rectangle
 | |
|   s32 minx = (std::min(std::min(X1, X2), X3) + 0xF) >> 4;
 | |
|   s32 maxx = (std::max(std::max(X1, X2), X3) + 0xF) >> 4;
 | |
|   s32 miny = (std::min(std::min(Y1, Y2), Y3) + 0xF) >> 4;
 | |
|   s32 maxy = (std::max(std::max(Y1, Y2), Y3) + 0xF) >> 4;
 | |
| 
 | |
|   // scissor
 | |
|   s32 xoff = bpmem.scissorOffset.x * 2;
 | |
|   s32 yoff = bpmem.scissorOffset.y * 2;
 | |
| 
 | |
|   s32 scissorLeft = bpmem.scissorTL.x - xoff;
 | |
|   if (scissorLeft < 0)
 | |
|     scissorLeft = 0;
 | |
| 
 | |
|   s32 scissorTop = bpmem.scissorTL.y - yoff;
 | |
|   if (scissorTop < 0)
 | |
|     scissorTop = 0;
 | |
| 
 | |
|   s32 scissorRight = bpmem.scissorBR.x - xoff + 1;
 | |
|   if (scissorRight > s32(EFB_WIDTH))
 | |
|     scissorRight = EFB_WIDTH;
 | |
| 
 | |
|   s32 scissorBottom = bpmem.scissorBR.y - yoff + 1;
 | |
|   if (scissorBottom > s32(EFB_HEIGHT))
 | |
|     scissorBottom = EFB_HEIGHT;
 | |
| 
 | |
|   minx = std::max(minx, scissorLeft);
 | |
|   maxx = std::min(maxx, scissorRight);
 | |
|   miny = std::max(miny, scissorTop);
 | |
|   maxy = std::min(maxy, scissorBottom);
 | |
| 
 | |
|   if (minx >= maxx || miny >= maxy)
 | |
|     return;
 | |
| 
 | |
|   // Setup slopes
 | |
|   float fltx1 = v0->screenPosition.x;
 | |
|   float flty1 = v0->screenPosition.y;
 | |
|   float fltdx31 = v2->screenPosition.x - fltx1;
 | |
|   float fltdx12 = fltx1 - v1->screenPosition.x;
 | |
|   float fltdy12 = flty1 - v1->screenPosition.y;
 | |
|   float fltdy31 = v2->screenPosition.y - flty1;
 | |
| 
 | |
|   InitTriangle(fltx1, flty1, (X1 + 0xF) >> 4, (Y1 + 0xF) >> 4);
 | |
| 
 | |
|   float w[3] = {1.0f / v0->projectedPosition.w, 1.0f / v1->projectedPosition.w,
 | |
|                 1.0f / v2->projectedPosition.w};
 | |
|   InitSlope(&WSlope, w[0], w[1], w[2], fltdx31, fltdx12, fltdy12, fltdy31);
 | |
| 
 | |
|   // TODO: The zfreeze emulation is not quite correct, yet!
 | |
|   // Many things might prevent us from reaching this line (culling, clipping, scissoring).
 | |
|   // However, the zslope is always guaranteed to be calculated unless all vertices are trivially
 | |
|   // rejected during clipping!
 | |
|   // We're currently sloppy at this since we abort early if any of the culling/clipping/scissoring
 | |
|   // tests fail.
 | |
|   if (!bpmem.genMode.zfreeze || !g_ActiveConfig.bZFreeze)
 | |
|     InitSlope(&ZSlope, v0->screenPosition[2], v1->screenPosition[2], v2->screenPosition[2], fltdx31,
 | |
|               fltdx12, fltdy12, fltdy31);
 | |
| 
 | |
|   for (unsigned int i = 0; i < bpmem.genMode.numcolchans; i++)
 | |
|   {
 | |
|     for (int comp = 0; comp < 4; comp++)
 | |
|       InitSlope(&ColorSlopes[i][comp], v0->color[i][comp], v1->color[i][comp], v2->color[i][comp],
 | |
|                 fltdx31, fltdx12, fltdy12, fltdy31);
 | |
|   }
 | |
| 
 | |
|   for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++)
 | |
|   {
 | |
|     for (int comp = 0; comp < 3; comp++)
 | |
|       InitSlope(&TexSlopes[i][comp], v0->texCoords[i][comp] * w[0], v1->texCoords[i][comp] * w[1],
 | |
|                 v2->texCoords[i][comp] * w[2], fltdx31, fltdx12, fltdy12, fltdy31);
 | |
|   }
 | |
| 
 | |
|   // Half-edge constants
 | |
|   s32 C1 = DY12 * X1 - DX12 * Y1;
 | |
|   s32 C2 = DY23 * X2 - DX23 * Y2;
 | |
|   s32 C3 = DY31 * X3 - DX31 * Y3;
 | |
| 
 | |
|   // Correct for fill convention
 | |
|   if (DY12 < 0 || (DY12 == 0 && DX12 > 0))
 | |
|     C1++;
 | |
|   if (DY23 < 0 || (DY23 == 0 && DX23 > 0))
 | |
|     C2++;
 | |
|   if (DY31 < 0 || (DY31 == 0 && DX31 > 0))
 | |
|     C3++;
 | |
| 
 | |
|   // Start in corner of 8x8 block
 | |
|   minx &= ~(BLOCK_SIZE - 1);
 | |
|   miny &= ~(BLOCK_SIZE - 1);
 | |
| 
 | |
|   // Loop through blocks
 | |
|   for (s32 y = miny; y < maxy; y += BLOCK_SIZE)
 | |
|   {
 | |
|     for (s32 x = minx; x < maxx; x += BLOCK_SIZE)
 | |
|     {
 | |
|       // Corners of block
 | |
|       s32 x0 = x << 4;
 | |
|       s32 x1 = (x + BLOCK_SIZE - 1) << 4;
 | |
|       s32 y0 = y << 4;
 | |
|       s32 y1 = (y + BLOCK_SIZE - 1) << 4;
 | |
| 
 | |
|       // Evaluate half-space functions
 | |
|       bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0;
 | |
|       bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0;
 | |
|       bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0;
 | |
|       bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0;
 | |
|       int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3);
 | |
| 
 | |
|       bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0;
 | |
|       bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0;
 | |
|       bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0;
 | |
|       bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0;
 | |
|       int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3);
 | |
| 
 | |
|       bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0;
 | |
|       bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0;
 | |
|       bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0;
 | |
|       bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0;
 | |
|       int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3);
 | |
| 
 | |
|       // Skip block when outside an edge
 | |
|       if (a == 0x0 || b == 0x0 || c == 0x0)
 | |
|         continue;
 | |
| 
 | |
|       BuildBlock(x, y);
 | |
| 
 | |
|       // Accept whole block when totally covered
 | |
|       if (a == 0xF && b == 0xF && c == 0xF)
 | |
|       {
 | |
|         for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
 | |
|         {
 | |
|           for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
 | |
|           {
 | |
|             Draw(x + ix, y + iy, ix, iy);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       else  // Partially covered block
 | |
|       {
 | |
|         s32 CY1 = C1 + DX12 * y0 - DY12 * x0;
 | |
|         s32 CY2 = C2 + DX23 * y0 - DY23 * x0;
 | |
|         s32 CY3 = C3 + DX31 * y0 - DY31 * x0;
 | |
| 
 | |
|         for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
 | |
|         {
 | |
|           s32 CX1 = CY1;
 | |
|           s32 CX2 = CY2;
 | |
|           s32 CX3 = CY3;
 | |
| 
 | |
|           for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
 | |
|           {
 | |
|             if (CX1 > 0 && CX2 > 0 && CX3 > 0)
 | |
|             {
 | |
|               Draw(x + ix, y + iy, ix, iy);
 | |
|             }
 | |
| 
 | |
|             CX1 -= FDY12;
 | |
|             CX2 -= FDY23;
 | |
|             CX3 -= FDY31;
 | |
|           }
 | |
| 
 | |
|           CY1 += FDX12;
 | |
|           CY2 += FDX23;
 | |
|           CY3 += FDX31;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| }  // namespace Rasterizer
 |