mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-27 02:19:46 +00:00 
			
		
		
		
	Fixes a situation where the following invalid GLSL code is generated: ```glsl float3 texSample0 = texture(samp0, float3(uv0 + float2(0, 0) * sample_offset, 0.0)).rgb; float3 texSample0 = floor(float3 texSample0 * 63.0) / 63.0; float3 texSample1 = texture(samp0, float3(uv0 + float2(1, 0) * sample_offset, 0.0)).rgb; float3 texSample1 = floor(float3 texSample1 * 63.0) / 63.0; ```
		
			
				
	
	
		
			1301 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1301 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #include <array>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <map>
 | |
| #include <sstream>
 | |
| 
 | |
| #include "Common/CommonFuncs.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/MathUtil.h"
 | |
| #include "Common/MsgHandler.h"
 | |
| #include "VideoCommon/RenderBase.h"
 | |
| #include "VideoCommon/TextureConversionShader.h"
 | |
| #include "VideoCommon/VideoCommon.h"
 | |
| 
 | |
| #define WRITE p += sprintf
 | |
| 
 | |
| static char text[16384];
 | |
| static bool IntensityConstantAdded = false;
 | |
| 
 | |
| namespace TextureConversionShader
 | |
| {
 | |
| u16 GetEncodedSampleCount(u32 format)
 | |
| {
 | |
|   switch (format)
 | |
|   {
 | |
|   case GX_TF_I4:
 | |
|     return 8;
 | |
|   case GX_TF_I8:
 | |
|     return 4;
 | |
|   case GX_TF_IA4:
 | |
|     return 4;
 | |
|   case GX_TF_IA8:
 | |
|     return 2;
 | |
|   case GX_TF_RGB565:
 | |
|     return 2;
 | |
|   case GX_TF_RGB5A3:
 | |
|     return 2;
 | |
|   case GX_TF_RGBA8:
 | |
|     return 1;
 | |
|   case GX_CTF_R4:
 | |
|     return 8;
 | |
|   case GX_CTF_RA4:
 | |
|     return 4;
 | |
|   case GX_CTF_RA8:
 | |
|     return 2;
 | |
|   case GX_CTF_A8:
 | |
|     return 4;
 | |
|   case GX_CTF_R8:
 | |
|     return 4;
 | |
|   case GX_CTF_G8:
 | |
|     return 4;
 | |
|   case GX_CTF_B8:
 | |
|     return 4;
 | |
|   case GX_CTF_RG8:
 | |
|     return 2;
 | |
|   case GX_CTF_GB8:
 | |
|     return 2;
 | |
|   case GX_TF_Z8:
 | |
|     return 4;
 | |
|   case GX_TF_Z16:
 | |
|     return 2;
 | |
|   case GX_TF_Z24X8:
 | |
|     return 1;
 | |
|   case GX_CTF_Z4:
 | |
|     return 8;
 | |
|   case GX_CTF_Z8M:
 | |
|     return 4;
 | |
|   case GX_CTF_Z8L:
 | |
|     return 4;
 | |
|   case GX_CTF_Z16L:
 | |
|     return 2;
 | |
|   default:
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool EFBFormatHasAlpha(u32 format)
 | |
| {
 | |
|   return format == PEControl::RGBA6_Z24;
 | |
| }
 | |
| 
 | |
| // block dimensions : widthStride, heightStride
 | |
| // texture dims : width, height, x offset, y offset
 | |
| static void WriteSwizzler(char*& p, u32 format, APIType ApiType)
 | |
| {
 | |
|   // left, top, of source rectangle within source texture
 | |
|   // width of the destination rectangle, scale_factor (1 or 2)
 | |
|   if (ApiType == APIType::Vulkan)
 | |
|     WRITE(p, "layout(std140, push_constant) uniform PCBlock { int4 position; } PC;\n");
 | |
|   else
 | |
|     WRITE(p, "uniform int4 position;\n");
 | |
| 
 | |
|   int blkW = TexDecoder_GetBlockWidthInTexels(format);
 | |
|   int blkH = TexDecoder_GetBlockHeightInTexels(format);
 | |
|   int samples = GetEncodedSampleCount(format);
 | |
| 
 | |
|   if (ApiType == APIType::OpenGL)
 | |
|   {
 | |
|     WRITE(p, "#define samp0 samp9\n");
 | |
|     WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");
 | |
| 
 | |
|     WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
 | |
|     WRITE(p, "void main()\n");
 | |
|     WRITE(p, "{\n"
 | |
|              "  int2 sampleUv;\n"
 | |
|              "  int2 uv1 = int2(gl_FragCoord.xy);\n");
 | |
|   }
 | |
|   else if (ApiType == APIType::Vulkan)
 | |
|   {
 | |
|     WRITE(p, "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n");
 | |
|     WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
 | |
| 
 | |
|     WRITE(p, "void main()\n");
 | |
|     WRITE(p, "{\n"
 | |
|              "  int2 sampleUv;\n"
 | |
|              "  int2 uv1 = int2(gl_FragCoord.xy);\n"
 | |
|              "  int4 position = PC.position;\n");
 | |
|   }
 | |
|   else  // D3D
 | |
|   {
 | |
|     WRITE(p, "sampler samp0 : register(s0);\n");
 | |
|     WRITE(p, "Texture2DArray Tex0 : register(t0);\n");
 | |
| 
 | |
|     WRITE(p, "void main(\n");
 | |
|     WRITE(p, "  out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n");
 | |
|     WRITE(p, "{\n"
 | |
|              "  int2 sampleUv;\n"
 | |
|              "  int2 uv1 = int2(rawpos.xy);\n");
 | |
|   }
 | |
| 
 | |
|   WRITE(p, "  int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples),
 | |
|         IntLog2(blkW));
 | |
|   WRITE(p, "  int y_block_position = uv1.y << %d;\n", IntLog2(blkH));
 | |
|   if (samples == 1)
 | |
|   {
 | |
|     // With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
 | |
|     WRITE(p, "  bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2);
 | |
|     samples = 2;
 | |
|   }
 | |
|   WRITE(p, "  int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1);
 | |
|   WRITE(p, "  int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples));
 | |
|   WRITE(p, "  int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1,
 | |
|         IntLog2(samples));
 | |
| 
 | |
|   WRITE(p, "  sampleUv.x = x_block_position + x_offset_in_block;\n");
 | |
|   WRITE(p, "  sampleUv.y = y_block_position + y_offset_in_block;\n");
 | |
| 
 | |
|   WRITE(p,
 | |
|         "  float2 uv0 = float2(sampleUv);\n");  // sampleUv is the sample position in (int)gx_coords
 | |
|   WRITE(p, "  uv0 += float2(0.5, 0.5);\n");     // move to center of pixel
 | |
|   WRITE(p, "  uv0 *= float(position.w);\n");  // scale by two if needed (also move to pixel borders
 | |
|                                               // so that linear filtering will average adjacent
 | |
|                                               // pixel)
 | |
|   WRITE(p, "  uv0 += float2(position.xy);\n");                    // move to copied rect
 | |
|   WRITE(p, "  uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT);  // normalize to [0:1]
 | |
|   if (ApiType == APIType::OpenGL)                                 // ogl has to flip up and down
 | |
|   {
 | |
|     WRITE(p, "  uv0.y = 1.0-uv0.y;\n");
 | |
|   }
 | |
| 
 | |
|   WRITE(p, "  float sample_offset = float(position.w) / float(%d);\n", EFB_WIDTH);
 | |
| }
 | |
| 
 | |
| static void WriteSampleColor(char*& p, const char* colorComp, const char* dest, int xoffset,
 | |
|                              APIType ApiType, const EFBCopyFormat& format, bool depth)
 | |
| {
 | |
|   if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
 | |
|   {
 | |
|     WRITE(p, "  %s = texture(samp0, float3(uv0 + float2(%d, 0) * sample_offset, 0.0)).%s;\n", dest,
 | |
|           xoffset, colorComp);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     WRITE(p, "  %s = Tex0.Sample(samp0, float3(uv0 + float2(%d, 0) * sample_offset, 0.0)).%s;\n",
 | |
|           dest, xoffset, colorComp);
 | |
|   }
 | |
| 
 | |
|   if (ApiType == APIType::D3D || ApiType == APIType::Vulkan)
 | |
|   {
 | |
|     // Handle D3D depth inversion.
 | |
|     if (depth)
 | |
|       WRITE(p, "  %s = 1.0 - %s;\n", dest, dest);
 | |
|   }
 | |
| 
 | |
|   // Truncate 8-bits to 5/6-bits per channel.
 | |
|   switch (format.efb_format)
 | |
|   {
 | |
|   case PEControl::RGBA6_Z24:
 | |
|     WRITE(p, "  %s = floor(%s * 63.0) / 63.0;\n", dest, dest);
 | |
|     break;
 | |
| 
 | |
|   case PEControl::RGB565_Z16:
 | |
|     WRITE(
 | |
|         p,
 | |
|         "  %s = floor(%s * float4(31.0, 63.0, 31.0, 1.0).%s) / float4(31.0, 63.0, 31.0, 1.0).%s;\n",
 | |
|         dest, dest, colorComp, colorComp);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Alpha channel is set to 1 in the copy if the EFB does not have an alpha channel.
 | |
|   if (std::strchr(colorComp, 'a') && !EFBFormatHasAlpha(format.efb_format))
 | |
|     WRITE(p, "  %s.a = 1.0;\n", dest);
 | |
| }
 | |
| 
 | |
| static void WriteColorToIntensity(char*& p, const char* src, const char* dest)
 | |
| {
 | |
|   if (!IntensityConstantAdded)
 | |
|   {
 | |
|     WRITE(p, "  float4 IntensityConst = float4(0.257f,0.504f,0.098f,0.0625f);\n");
 | |
|     IntensityConstantAdded = true;
 | |
|   }
 | |
|   WRITE(p, "  %s = dot(IntensityConst.rgb, %s.rgb);\n", dest, src);
 | |
|   // don't add IntensityConst.a yet, because doing it later is faster and uses less instructions,
 | |
|   // due to vectorization
 | |
| }
 | |
| 
 | |
| static void WriteToBitDepth(char*& p, u8 depth, const char* src, const char* dest)
 | |
| {
 | |
|   WRITE(p, "  %s = floor(%s * 255.0 / exp2(8.0 - %d.0));\n", dest, src, depth);
 | |
| }
 | |
| 
 | |
| static void WriteEncoderEnd(char*& p)
 | |
| {
 | |
|   WRITE(p, "}\n");
 | |
|   IntensityConstantAdded = false;
 | |
| }
 | |
| 
 | |
| static void WriteI8Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_I8, ApiType);
 | |
|   WRITE(p, "  float3 texSample;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 0, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "ocol0.b");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 1, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "ocol0.g");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 2, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "ocol0.r");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 3, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "ocol0.a");
 | |
| 
 | |
|   WRITE(p, "  ocol0.rgba += IntensityConst.aaaa;\n");  // see WriteColorToIntensity
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteI4Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_I4, ApiType);
 | |
|   WRITE(p, "  float3 texSample;\n");
 | |
|   WRITE(p, "  float4 color0;\n");
 | |
|   WRITE(p, "  float4 color1;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 0, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color0.b");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 1, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color1.b");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 2, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color0.g");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 3, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color1.g");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 4, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color0.r");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 5, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color1.r");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 6, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color0.a");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample", 7, ApiType, format, false);
 | |
|   WriteColorToIntensity(p, "texSample", "color1.a");
 | |
| 
 | |
|   WRITE(p, "  color0.rgba += IntensityConst.aaaa;\n");
 | |
|   WRITE(p, "  color1.rgba += IntensityConst.aaaa;\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 4, "color0", "color0");
 | |
|   WriteToBitDepth(p, 4, "color1", "color1");
 | |
| 
 | |
|   WRITE(p, "  ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteIA8Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_IA8, ApiType);
 | |
|   WRITE(p, "  float4 texSample;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
 | |
|   WRITE(p, "  ocol0.b = texSample.a;\n");
 | |
|   WriteColorToIntensity(p, "texSample", "ocol0.g");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
 | |
|   WRITE(p, "  ocol0.r = texSample.a;\n");
 | |
|   WriteColorToIntensity(p, "texSample", "ocol0.a");
 | |
| 
 | |
|   WRITE(p, "  ocol0.ga += IntensityConst.aa;\n");
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteIA4Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_IA4, ApiType);
 | |
|   WRITE(p, "  float4 texSample;\n");
 | |
|   WRITE(p, "  float4 color0;\n");
 | |
|   WRITE(p, "  float4 color1;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
 | |
|   WRITE(p, "  color0.b = texSample.a;\n");
 | |
|   WriteColorToIntensity(p, "texSample", "color1.b");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
 | |
|   WRITE(p, "  color0.g = texSample.a;\n");
 | |
|   WriteColorToIntensity(p, "texSample", "color1.g");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 2, ApiType, format, false);
 | |
|   WRITE(p, "  color0.r = texSample.a;\n");
 | |
|   WriteColorToIntensity(p, "texSample", "color1.r");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 3, ApiType, format, false);
 | |
|   WRITE(p, "  color0.a = texSample.a;\n");
 | |
|   WriteColorToIntensity(p, "texSample", "color1.a");
 | |
| 
 | |
|   WRITE(p, "  color1.rgba += IntensityConst.aaaa;\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 4, "color0", "color0");
 | |
|   WriteToBitDepth(p, 4, "color1", "color1");
 | |
| 
 | |
|   WRITE(p, "  ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteRGB565Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_RGB565, ApiType);
 | |
|   WRITE(p, "  float3 texSample0;\n");
 | |
|   WRITE(p, "  float3 texSample1;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgb", "texSample0", 0, ApiType, format, false);
 | |
|   WriteSampleColor(p, "rgb", "texSample1", 1, ApiType, format, false);
 | |
|   WRITE(p, "  float2 texRs = float2(texSample0.r, texSample1.r);\n");
 | |
|   WRITE(p, "  float2 texGs = float2(texSample0.g, texSample1.g);\n");
 | |
|   WRITE(p, "  float2 texBs = float2(texSample0.b, texSample1.b);\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 6, "texGs", "float2 gInt");
 | |
|   WRITE(p, "  float2 gUpper = floor(gInt / 8.0);\n");
 | |
|   WRITE(p, "  float2 gLower = gInt - gUpper * 8.0;\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 5, "texRs", "ocol0.br");
 | |
|   WRITE(p, "  ocol0.br = ocol0.br * 8.0 + gUpper;\n");
 | |
|   WriteToBitDepth(p, 5, "texBs", "ocol0.ga");
 | |
|   WRITE(p, "  ocol0.ga = ocol0.ga + gLower * 32.0;\n");
 | |
| 
 | |
|   WRITE(p, "  ocol0 = ocol0 / 255.0;\n");
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteRGB5A3Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_RGB5A3, ApiType);
 | |
| 
 | |
|   WRITE(p, "  float4 texSample;\n");
 | |
|   WRITE(p, "  float color0;\n");
 | |
|   WRITE(p, "  float gUpper;\n");
 | |
|   WRITE(p, "  float gLower;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
 | |
| 
 | |
|   // 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits
 | |
|   WRITE(p, "if(texSample.a > 0.878f) {\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 5, "texSample.g", "color0");
 | |
|   WRITE(p, "  gUpper = floor(color0 / 8.0);\n");
 | |
|   WRITE(p, "  gLower = color0 - gUpper * 8.0;\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 5, "texSample.r", "ocol0.b");
 | |
|   WRITE(p, "  ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n");
 | |
|   WriteToBitDepth(p, 5, "texSample.b", "ocol0.g");
 | |
|   WRITE(p, "  ocol0.g = ocol0.g + gLower * 32.0;\n");
 | |
| 
 | |
|   WRITE(p, "} else {\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 4, "texSample.r", "ocol0.b");
 | |
|   WriteToBitDepth(p, 4, "texSample.b", "ocol0.g");
 | |
| 
 | |
|   WriteToBitDepth(p, 3, "texSample.a", "color0");
 | |
|   WRITE(p, "ocol0.b = ocol0.b + color0 * 16.0;\n");
 | |
|   WriteToBitDepth(p, 4, "texSample.g", "color0");
 | |
|   WRITE(p, "ocol0.g = ocol0.g + color0 * 16.0;\n");
 | |
| 
 | |
|   WRITE(p, "}\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
 | |
|   WRITE(p, "  texSample.a = 1.0;\n");
 | |
| 
 | |
|   WRITE(p, "if(texSample.a > 0.878f) {\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 5, "texSample.g", "color0");
 | |
|   WRITE(p, "  gUpper = floor(color0 / 8.0);\n");
 | |
|   WRITE(p, "  gLower = color0 - gUpper * 8.0;\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 5, "texSample.r", "ocol0.r");
 | |
|   WRITE(p, "  ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n");
 | |
|   WriteToBitDepth(p, 5, "texSample.b", "ocol0.a");
 | |
|   WRITE(p, "  ocol0.a = ocol0.a + gLower * 32.0;\n");
 | |
| 
 | |
|   WRITE(p, "} else {\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 4, "texSample.r", "ocol0.r");
 | |
|   WriteToBitDepth(p, 4, "texSample.b", "ocol0.a");
 | |
| 
 | |
|   WriteToBitDepth(p, 3, "texSample.a", "color0");
 | |
|   WRITE(p, "ocol0.r = ocol0.r + color0 * 16.0;\n");
 | |
|   WriteToBitDepth(p, 4, "texSample.g", "color0");
 | |
|   WRITE(p, "ocol0.a = ocol0.a + color0 * 16.0;\n");
 | |
| 
 | |
|   WRITE(p, "}\n");
 | |
| 
 | |
|   WRITE(p, "  ocol0 = ocol0 / 255.0;\n");
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteRGBA8Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_RGBA8, ApiType);
 | |
| 
 | |
|   WRITE(p, "  float4 texSample;\n");
 | |
|   WRITE(p, "  float4 color0;\n");
 | |
|   WRITE(p, "  float4 color1;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
 | |
|   WRITE(p, "  color0.b = texSample.a;\n");
 | |
|   WRITE(p, "  color0.g = texSample.r;\n");
 | |
|   WRITE(p, "  color1.b = texSample.g;\n");
 | |
|   WRITE(p, "  color1.g = texSample.b;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
 | |
|   WRITE(p, "  color0.r = texSample.a;\n");
 | |
|   WRITE(p, "  color0.a = texSample.r;\n");
 | |
|   WRITE(p, "  color1.r = texSample.g;\n");
 | |
|   WRITE(p, "  color1.a = texSample.b;\n");
 | |
| 
 | |
|   WRITE(p, "  ocol0 = first ? color0 : color1;\n");
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteC4Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyFormat& format,
 | |
|                            bool depth)
 | |
| {
 | |
|   WriteSwizzler(p, GX_CTF_R4, ApiType);
 | |
|   WRITE(p, "  float4 color0;\n");
 | |
|   WRITE(p, "  float4 color1;\n");
 | |
| 
 | |
|   WriteSampleColor(p, comp, "color0.b", 0, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "color1.b", 1, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "color0.g", 2, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "color1.g", 3, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "color0.r", 4, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "color1.r", 5, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "color0.a", 6, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "color1.a", 7, ApiType, format, depth);
 | |
| 
 | |
|   WriteToBitDepth(p, 4, "color0", "color0");
 | |
|   WriteToBitDepth(p, 4, "color1", "color1");
 | |
| 
 | |
|   WRITE(p, "  ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteC8Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyFormat& format,
 | |
|                            bool depth)
 | |
| {
 | |
|   WriteSwizzler(p, GX_CTF_R8, ApiType);
 | |
| 
 | |
|   WriteSampleColor(p, comp, "ocol0.b", 0, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "ocol0.g", 1, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "ocol0.r", 2, ApiType, format, depth);
 | |
|   WriteSampleColor(p, comp, "ocol0.a", 3, ApiType, format, depth);
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteCC4Encoder(char*& p, const char* comp, APIType ApiType,
 | |
|                             const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_CTF_RA4, ApiType);
 | |
|   WRITE(p, "  float2 texSample;\n");
 | |
|   WRITE(p, "  float4 color0;\n");
 | |
|   WRITE(p, "  float4 color1;\n");
 | |
| 
 | |
|   WriteSampleColor(p, comp, "texSample", 0, ApiType, format, false);
 | |
|   WRITE(p, "  color0.b = texSample.x;\n");
 | |
|   WRITE(p, "  color1.b = texSample.y;\n");
 | |
| 
 | |
|   WriteSampleColor(p, comp, "texSample", 1, ApiType, format, false);
 | |
|   WRITE(p, "  color0.g = texSample.x;\n");
 | |
|   WRITE(p, "  color1.g = texSample.y;\n");
 | |
| 
 | |
|   WriteSampleColor(p, comp, "texSample", 2, ApiType, format, false);
 | |
|   WRITE(p, "  color0.r = texSample.x;\n");
 | |
|   WRITE(p, "  color1.r = texSample.y;\n");
 | |
| 
 | |
|   WriteSampleColor(p, comp, "texSample", 3, ApiType, format, false);
 | |
|   WRITE(p, "  color0.a = texSample.x;\n");
 | |
|   WRITE(p, "  color1.a = texSample.y;\n");
 | |
| 
 | |
|   WriteToBitDepth(p, 4, "color0", "color0");
 | |
|   WriteToBitDepth(p, 4, "color1", "color1");
 | |
| 
 | |
|   WRITE(p, "  ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteCC8Encoder(char*& p, const char* comp, APIType ApiType,
 | |
|                             const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_CTF_RA8, ApiType);
 | |
| 
 | |
|   WriteSampleColor(p, comp, "ocol0.bg", 0, ApiType, format, false);
 | |
|   WriteSampleColor(p, comp, "ocol0.ra", 1, ApiType, format, false);
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteZ8Encoder(char*& p, const char* multiplier, APIType ApiType,
 | |
|                            const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_CTF_Z8M, ApiType);
 | |
| 
 | |
|   WRITE(p, " float depth;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 0, ApiType, format, true);
 | |
|   WRITE(p, "ocol0.b = frac(depth * %s);\n", multiplier);
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 1, ApiType, format, true);
 | |
|   WRITE(p, "ocol0.g = frac(depth * %s);\n", multiplier);
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 2, ApiType, format, true);
 | |
|   WRITE(p, "ocol0.r = frac(depth * %s);\n", multiplier);
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 3, ApiType, format, true);
 | |
|   WRITE(p, "ocol0.a = frac(depth * %s);\n", multiplier);
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteZ16Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_Z16, ApiType);
 | |
| 
 | |
|   WRITE(p, "  float depth;\n");
 | |
|   WRITE(p, "  float3 expanded;\n");
 | |
| 
 | |
|   // byte order is reversed
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 0, ApiType, format, true);
 | |
| 
 | |
|   WRITE(p, "  depth *= 16777216.0;\n");
 | |
|   WRITE(p, "  expanded.r = floor(depth / (256.0 * 256.0));\n");
 | |
|   WRITE(p, "  depth -= expanded.r * 256.0 * 256.0;\n");
 | |
|   WRITE(p, "  expanded.g = floor(depth / 256.0);\n");
 | |
| 
 | |
|   WRITE(p, "  ocol0.b = expanded.g / 255.0;\n");
 | |
|   WRITE(p, "  ocol0.g = expanded.r / 255.0;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 1, ApiType, format, true);
 | |
| 
 | |
|   WRITE(p, "  depth *= 16777216.0;\n");
 | |
|   WRITE(p, "  expanded.r = floor(depth / (256.0 * 256.0));\n");
 | |
|   WRITE(p, "  depth -= expanded.r * 256.0 * 256.0;\n");
 | |
|   WRITE(p, "  expanded.g = floor(depth / 256.0);\n");
 | |
| 
 | |
|   WRITE(p, "  ocol0.r = expanded.g / 255.0;\n");
 | |
|   WRITE(p, "  ocol0.a = expanded.r / 255.0;\n");
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteZ16LEncoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_CTF_Z16L, ApiType);
 | |
| 
 | |
|   WRITE(p, "  float depth;\n");
 | |
|   WRITE(p, "  float3 expanded;\n");
 | |
| 
 | |
|   // byte order is reversed
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 0, ApiType, format, true);
 | |
| 
 | |
|   WRITE(p, "  depth *= 16777216.0;\n");
 | |
|   WRITE(p, "  expanded.r = floor(depth / (256.0 * 256.0));\n");
 | |
|   WRITE(p, "  depth -= expanded.r * 256.0 * 256.0;\n");
 | |
|   WRITE(p, "  expanded.g = floor(depth / 256.0);\n");
 | |
|   WRITE(p, "  depth -= expanded.g * 256.0;\n");
 | |
|   WRITE(p, "  expanded.b = depth;\n");
 | |
| 
 | |
|   WRITE(p, "  ocol0.b = expanded.b / 255.0;\n");
 | |
|   WRITE(p, "  ocol0.g = expanded.g / 255.0;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth", 1, ApiType, format, true);
 | |
| 
 | |
|   WRITE(p, "  depth *= 16777216.0;\n");
 | |
|   WRITE(p, "  expanded.r = floor(depth / (256.0 * 256.0));\n");
 | |
|   WRITE(p, "  depth -= expanded.r * 256.0 * 256.0;\n");
 | |
|   WRITE(p, "  expanded.g = floor(depth / 256.0);\n");
 | |
|   WRITE(p, "  depth -= expanded.g * 256.0;\n");
 | |
|   WRITE(p, "  expanded.b = depth;\n");
 | |
| 
 | |
|   WRITE(p, "  ocol0.r = expanded.b / 255.0;\n");
 | |
|   WRITE(p, "  ocol0.a = expanded.g / 255.0;\n");
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| static void WriteZ24Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
 | |
| {
 | |
|   WriteSwizzler(p, GX_TF_Z24X8, ApiType);
 | |
| 
 | |
|   WRITE(p, "  float depth0;\n");
 | |
|   WRITE(p, "  float depth1;\n");
 | |
|   WRITE(p, "  float3 expanded0;\n");
 | |
|   WRITE(p, "  float3 expanded1;\n");
 | |
| 
 | |
|   WriteSampleColor(p, "r", "depth0", 0, ApiType, format, true);
 | |
|   WriteSampleColor(p, "r", "depth1", 1, ApiType, format, true);
 | |
| 
 | |
|   for (int i = 0; i < 2; i++)
 | |
|   {
 | |
|     WRITE(p, "  depth%i *= 16777216.0;\n", i);
 | |
| 
 | |
|     WRITE(p, "  expanded%i.r = floor(depth%i / (256.0 * 256.0));\n", i, i);
 | |
|     WRITE(p, "  depth%i -= expanded%i.r * 256.0 * 256.0;\n", i, i);
 | |
|     WRITE(p, "  expanded%i.g = floor(depth%i / 256.0);\n", i, i);
 | |
|     WRITE(p, "  depth%i -= expanded%i.g * 256.0;\n", i, i);
 | |
|     WRITE(p, "  expanded%i.b = depth%i;\n", i, i);
 | |
|   }
 | |
| 
 | |
|   WRITE(p, "  if (!first) {\n");
 | |
|   // upper 16
 | |
|   WRITE(p, "     ocol0.b = expanded0.g / 255.0;\n");
 | |
|   WRITE(p, "     ocol0.g = expanded0.b / 255.0;\n");
 | |
|   WRITE(p, "     ocol0.r = expanded1.g / 255.0;\n");
 | |
|   WRITE(p, "     ocol0.a = expanded1.b / 255.0;\n");
 | |
|   WRITE(p, "  } else {\n");
 | |
|   // lower 8
 | |
|   WRITE(p, "     ocol0.b = 1.0;\n");
 | |
|   WRITE(p, "     ocol0.g = expanded0.r / 255.0;\n");
 | |
|   WRITE(p, "     ocol0.r = 1.0;\n");
 | |
|   WRITE(p, "     ocol0.a = expanded1.r / 255.0;\n");
 | |
|   WRITE(p, "  }\n");
 | |
| 
 | |
|   WriteEncoderEnd(p);
 | |
| }
 | |
| 
 | |
| const char* GenerateEncodingShader(const EFBCopyFormat& format, APIType api_type)
 | |
| {
 | |
|   text[sizeof(text) - 1] = 0x7C;  // canary
 | |
| 
 | |
|   char* p = text;
 | |
| 
 | |
|   switch (format.copy_format)
 | |
|   {
 | |
|   case GX_TF_I4:
 | |
|     WriteI4Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_TF_I8:
 | |
|     WriteI8Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_TF_IA4:
 | |
|     WriteIA4Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_TF_IA8:
 | |
|     WriteIA8Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_TF_RGB565:
 | |
|     WriteRGB565Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_TF_RGB5A3:
 | |
|     WriteRGB5A3Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_TF_RGBA8:
 | |
|     WriteRGBA8Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_R4:
 | |
|     WriteC4Encoder(p, "r", api_type, format, false);
 | |
|     break;
 | |
|   case GX_CTF_RA4:
 | |
|     WriteCC4Encoder(p, "ar", api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_RA8:
 | |
|     WriteCC8Encoder(p, "ar", api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_A8:
 | |
|     WriteC8Encoder(p, "a", api_type, format, false);
 | |
|     break;
 | |
|   case GX_CTF_R8:
 | |
|     WriteC8Encoder(p, "r", api_type, format, false);
 | |
|     break;
 | |
|   case GX_CTF_G8:
 | |
|     WriteC8Encoder(p, "g", api_type, format, false);
 | |
|     break;
 | |
|   case GX_CTF_B8:
 | |
|     WriteC8Encoder(p, "b", api_type, format, false);
 | |
|     break;
 | |
|   case GX_CTF_RG8:
 | |
|     WriteCC8Encoder(p, "rg", api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_GB8:
 | |
|     WriteCC8Encoder(p, "gb", api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_Z8H:
 | |
|   case GX_TF_Z8:
 | |
|     WriteC8Encoder(p, "r", api_type, format, true);
 | |
|     break;
 | |
|   case GX_CTF_Z16R:
 | |
|   case GX_TF_Z16:
 | |
|     WriteZ16Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_TF_Z24X8:
 | |
|     WriteZ24Encoder(p, api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_Z4:
 | |
|     WriteC4Encoder(p, "r", api_type, format, true);
 | |
|     break;
 | |
|   case GX_CTF_Z8M:
 | |
|     WriteZ8Encoder(p, "256.0", api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_Z8L:
 | |
|     WriteZ8Encoder(p, "65536.0", api_type, format);
 | |
|     break;
 | |
|   case GX_CTF_Z16L:
 | |
|     WriteZ16LEncoder(p, api_type, format);
 | |
|     break;
 | |
|   default:
 | |
|     PanicAlert("Unknown texture copy format: 0x%x\n", static_cast<u32>(format.copy_format));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (text[sizeof(text) - 1] != 0x7C)
 | |
|     PanicAlert("TextureConversionShader generator - buffer too small, canary has been eaten!");
 | |
| 
 | |
|   return text;
 | |
| }
 | |
| 
 | |
| // NOTE: In these uniforms, a row refers to a row of blocks, not texels.
 | |
| static const char decoding_shader_header[] = R"(
 | |
| #ifdef VULKAN
 | |
| 
 | |
| layout(std140, push_constant) uniform PushConstants {
 | |
|   uvec2 dst_size;
 | |
|   uvec2 src_size;
 | |
|   uint src_offset;
 | |
|   uint src_row_stride;
 | |
|   uint palette_offset;
 | |
| } push_constants;
 | |
| #define u_dst_size (push_constants.dst_size)
 | |
| #define u_src_size (push_constants.src_size)
 | |
| #define u_src_offset (push_constants.src_offset)
 | |
| #define u_src_row_stride (push_constants.src_row_stride)
 | |
| #define u_palette_offset (push_constants.palette_offset)
 | |
| 
 | |
| TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer;
 | |
| TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer;
 | |
| 
 | |
| IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image;
 | |
| 
 | |
| #else
 | |
| 
 | |
| uniform uvec2 u_dst_size;
 | |
| uniform uvec2 u_src_size;
 | |
| uniform uint u_src_offset;
 | |
| uniform uint u_src_row_stride;
 | |
| uniform uint u_palette_offset;
 | |
| 
 | |
| SAMPLER_BINDING(9) uniform usamplerBuffer s_input_buffer;
 | |
| SAMPLER_BINDING(10) uniform usamplerBuffer s_palette_buffer;
 | |
| 
 | |
| layout(rgba8, binding = 0) uniform writeonly image2DArray output_image;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| uint Swap16(uint v)
 | |
| {
 | |
|   // Convert BE to LE.
 | |
|   return ((v >> 8) | (v << 8)) & 0xFFFFu;
 | |
| }
 | |
| 
 | |
| uint Convert3To8(uint v)
 | |
| {
 | |
|   // Swizzle bits: 00000123 -> 12312312
 | |
|   return (v << 5) | (v << 2) | (v >> 1);
 | |
| }
 | |
| uint Convert4To8(uint v)
 | |
| {
 | |
|   // Swizzle bits: 00001234 -> 12341234
 | |
|   return (v << 4) | v;
 | |
| }
 | |
| uint Convert5To8(uint v)
 | |
| {
 | |
|   // Swizzle bits: 00012345 -> 12345123
 | |
|   return (v << 3) | (v >> 2);
 | |
| }
 | |
| uint Convert6To8(uint v)
 | |
| {
 | |
|   // Swizzle bits: 00123456 -> 12345612
 | |
|   return (v << 2) | (v >> 4);
 | |
| }
 | |
| 
 | |
| uint GetTiledTexelOffset(uvec2 block_size, uvec2 coords)
 | |
| {
 | |
|   uvec2 block = coords / block_size;
 | |
|   uvec2 offset = coords % block_size;
 | |
|   uint buffer_pos = u_src_offset;
 | |
|   buffer_pos += block.y * u_src_row_stride;
 | |
|   buffer_pos += block.x * (block_size.x * block_size.y);
 | |
|   buffer_pos += offset.y * block_size.x;
 | |
|   buffer_pos += offset.x;
 | |
|   return buffer_pos;
 | |
| }
 | |
| 
 | |
| uvec4 GetPaletteColor(uint index)
 | |
| {
 | |
|   // Fetch and swap BE to LE.
 | |
|   uint val = Swap16(texelFetch(s_palette_buffer, int(u_palette_offset + index)).x);
 | |
| 
 | |
|   uvec4 color;
 | |
| #if defined(PALETTE_FORMAT_IA8)
 | |
|   uint a = bitfieldExtract(val, 8, 8);
 | |
|   uint i = bitfieldExtract(val, 0, 8);
 | |
|   color = uvec4(i, i, i, a);
 | |
| #elif defined(PALETTE_FORMAT_RGB565)
 | |
|   color.x = Convert5To8(bitfieldExtract(val, 11, 5));
 | |
|   color.y = Convert6To8(bitfieldExtract(val, 5, 6));
 | |
|   color.z = Convert5To8(bitfieldExtract(val, 0, 5));
 | |
|   color.a = 255u;
 | |
| 
 | |
| #elif defined(PALETTE_FORMAT_RGB5A3)
 | |
|   if ((val & 0x8000u) != 0u)
 | |
|   {
 | |
|     color.x = Convert5To8(bitfieldExtract(val, 10, 5));
 | |
|     color.y = Convert5To8(bitfieldExtract(val, 5, 5));
 | |
|     color.z = Convert5To8(bitfieldExtract(val, 0, 5));
 | |
|     color.a = 255u;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     color.a = Convert3To8(bitfieldExtract(val, 12, 3));
 | |
|     color.r = Convert4To8(bitfieldExtract(val, 8, 4));
 | |
|     color.g = Convert4To8(bitfieldExtract(val, 4, 4));
 | |
|     color.b = Convert4To8(bitfieldExtract(val, 0, 4));
 | |
|   }
 | |
| #else
 | |
|   // Not used.
 | |
|   color = uvec4(0, 0, 0, 0);
 | |
| #endif
 | |
| 
 | |
|   return color;
 | |
| }
 | |
| 
 | |
| vec4 GetPaletteColorNormalized(uint index)
 | |
| {
 | |
|   uvec4 color = GetPaletteColor(index);
 | |
|   return vec4(color) / 255.0;
 | |
| }
 | |
| 
 | |
| )";
 | |
| 
 | |
| static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
 | |
|     {GX_TF_I4,
 | |
|      {BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 8x8 blocks, 4 bits per pixel
 | |
|         // We need to do the tiling manually here because the texel size is smaller than
 | |
|         // the size of the buffer elements.
 | |
|         uint2 block = coords.xy / 8u;
 | |
|         uint2 offset = coords.xy % 8u;
 | |
|         uint buffer_pos = u_src_offset;
 | |
|         buffer_pos += block.y * u_src_row_stride;
 | |
|         buffer_pos += block.x * 32u;
 | |
|         buffer_pos += offset.y * 4u;
 | |
|         buffer_pos += offset.x / 2u;
 | |
| 
 | |
|         // Select high nibble for odd texels, low for even.
 | |
|         uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
 | |
|         uint i;
 | |
|         if ((coords.x & 1u) == 0u)
 | |
|           i = Convert4To8((val >> 4));
 | |
|         else
 | |
|           i = Convert4To8((val & 0x0Fu));
 | |
| 
 | |
|         uvec4 color = uvec4(i, i, i, i);
 | |
|         vec4 norm_color = vec4(color) / 255.0;
 | |
| 
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
| 
 | |
|       )"}},
 | |
|     {GX_TF_IA4,
 | |
|      {BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 8x4 blocks, 8 bits per pixel
 | |
|         uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
 | |
|         uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
 | |
|         uint i = Convert4To8((val & 0x0Fu));
 | |
|         uint a = Convert4To8((val >> 4));
 | |
|         uvec4 color = uvec4(i, i, i, a);
 | |
|         vec4 norm_color = vec4(color) / 255.0;
 | |
| 
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
|       )"}},
 | |
|     {GX_TF_I8,
 | |
|      {BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 8x4 blocks, 8 bits per pixel
 | |
|         uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
 | |
|         uint i = texelFetch(s_input_buffer, int(buffer_pos)).x;
 | |
|         uvec4 color = uvec4(i, i, i, i);
 | |
|         vec4 norm_color = vec4(color) / 255.0;
 | |
| 
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
|       )"}},
 | |
|     {GX_TF_IA8,
 | |
|      {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 4x4 blocks, 16 bits per pixel
 | |
|         uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
 | |
|         uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
 | |
|         uint a = (val & 0xFFu);
 | |
|         uint i = (val >> 8);
 | |
|         uvec4 color = uvec4(i, i, i, a);
 | |
|         vec4 norm_color = vec4(color) / 255.0;
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
|       )"}},
 | |
|     {GX_TF_RGB565,
 | |
|      {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 4x4 blocks
 | |
|         uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
 | |
|         uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
 | |
| 
 | |
|         uvec4 color;
 | |
|         color.x = Convert5To8(bitfieldExtract(val, 11, 5));
 | |
|         color.y = Convert6To8(bitfieldExtract(val, 5, 6));
 | |
|         color.z = Convert5To8(bitfieldExtract(val, 0, 5));
 | |
|         color.a = 255u;
 | |
| 
 | |
|         vec4 norm_color = vec4(color) / 255.0;
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
| 
 | |
|       )"}},
 | |
|     {GX_TF_RGB5A3,
 | |
|      {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 4x4 blocks
 | |
|         uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
 | |
|         uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
 | |
| 
 | |
|         uvec4 color;
 | |
|         if ((val & 0x8000u) != 0u)
 | |
|         {
 | |
|           color.x = Convert5To8(bitfieldExtract(val, 10, 5));
 | |
|           color.y = Convert5To8(bitfieldExtract(val, 5, 5));
 | |
|           color.z = Convert5To8(bitfieldExtract(val, 0, 5));
 | |
|           color.a = 255u;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           color.a = Convert3To8(bitfieldExtract(val, 12, 3));
 | |
|           color.r = Convert4To8(bitfieldExtract(val, 8, 4));
 | |
|           color.g = Convert4To8(bitfieldExtract(val, 4, 4));
 | |
|           color.b = Convert4To8(bitfieldExtract(val, 0, 4));
 | |
|         }
 | |
| 
 | |
|         vec4 norm_color = vec4(color) / 255.0;
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
| 
 | |
|       )"}},
 | |
|     {GX_TF_RGBA8,
 | |
|      {BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 4x4 blocks
 | |
|         // We can't use the normal calculation function, as these are packed as the AR channels
 | |
|         // for the entire block, then the GB channels afterwards.
 | |
|         uint2 block = coords.xy / 4u;
 | |
|         uint2 offset = coords.xy % 4u;
 | |
|         uint buffer_pos = u_src_offset;
 | |
| 
 | |
|         // Our buffer has 16-bit elements, so the offsets here are half what they would be in bytes.
 | |
|         buffer_pos += block.y * u_src_row_stride;
 | |
|         buffer_pos += block.x * 32u;
 | |
|         buffer_pos += offset.y * 4u;
 | |
|         buffer_pos += offset.x;
 | |
| 
 | |
|         // The two GB channels follow after the block's AR channels.
 | |
|         uint val1 = texelFetch(s_input_buffer, int(buffer_pos + 0u)).x;
 | |
|         uint val2 = texelFetch(s_input_buffer, int(buffer_pos + 16u)).x;
 | |
| 
 | |
|         uvec4 color;
 | |
|         color.a = (val1 & 0xFFu);
 | |
|         color.r = (val1 >> 8);
 | |
|         color.g = (val2 & 0xFFu);
 | |
|         color.b = (val2 >> 8);
 | |
| 
 | |
|         vec4 norm_color = vec4(color) / 255.0;
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
|       )"}},
 | |
|     {GX_TF_CMPR,
 | |
|      {BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true,
 | |
|       R"(
 | |
|       // In the compute version of this decoder, we flatten the blocks to a one-dimension array.
 | |
|       // Each group is subdivided into 16, and the first thread in each group fetches the DXT data.
 | |
|       // All threads then calculate the possible colors for the block and write to the output image.
 | |
| 
 | |
|       #define GROUP_SIZE 64u
 | |
|       #define BLOCK_SIZE_X 4u
 | |
|       #define BLOCK_SIZE_Y 4u
 | |
|       #define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y)
 | |
|       #define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE)
 | |
| 
 | |
|       layout(local_size_x = GROUP_SIZE, local_size_y = 1) in;
 | |
| 
 | |
|       shared uvec2 shared_temp[BLOCKS_PER_GROUP];
 | |
| 
 | |
|       uint DXTBlend(uint v1, uint v2)
 | |
|       {
 | |
|         // 3/8 blend, which is close to 1/3
 | |
|         return ((v1 * 3u + v2 * 5u) >> 3);
 | |
|       }
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uint local_thread_id = gl_LocalInvocationID.x;
 | |
|         uint block_in_group = local_thread_id / BLOCK_SIZE;
 | |
|         uint thread_in_block = local_thread_id % BLOCK_SIZE;
 | |
|         uint block_index = gl_WorkGroupID.x * BLOCKS_PER_GROUP + block_in_group;
 | |
| 
 | |
|         // Annoyingly, we can't precalculate this as a uniform because the DXT block size differs
 | |
|         // from the block size of the overall texture (4 vs 8). We can however use a multiply and
 | |
|         // subtraction to avoid the modulo for calculating the block's X coordinate.
 | |
|         uint blocks_wide = u_src_size.x / BLOCK_SIZE_X;
 | |
|         uvec2 block_coords;
 | |
|         block_coords.y = block_index / blocks_wide;
 | |
|         block_coords.x = block_index - (block_coords.y * blocks_wide);
 | |
| 
 | |
|         // Only the first thread for each block reads from the texel buffer.
 | |
|         if (thread_in_block == 0u)
 | |
|         {
 | |
|           // Calculate tiled block coordinates.
 | |
|           uvec2 tile_block_coords = block_coords / 2u;
 | |
|           uvec2 subtile_block_coords = block_coords % 2u;
 | |
|           uint buffer_pos = u_src_offset;
 | |
|           buffer_pos += tile_block_coords.y * u_src_row_stride;
 | |
|           buffer_pos += tile_block_coords.x * 4u;
 | |
|           buffer_pos += subtile_block_coords.y * 2u;
 | |
|           buffer_pos += subtile_block_coords.x;
 | |
| 
 | |
|           // Read the entire DXT block to shared memory.
 | |
|           uvec2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy;
 | |
|           shared_temp[block_in_group] = raw_data;
 | |
|         }
 | |
| 
 | |
|         // Ensure store is completed before the remaining threads in the block continue.
 | |
|         memoryBarrierShared();
 | |
|         barrier();
 | |
| 
 | |
|         // Unpack colors and swap BE to LE.
 | |
|         uvec2 raw_data = shared_temp[block_in_group];
 | |
|         uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8);
 | |
|         uint c1 = swapped & 0xFFFFu;
 | |
|         uint c2 = swapped >> 16;
 | |
| 
 | |
|         // Expand 5/6 bit channels to 8-bits per channel.
 | |
|         uint blue1 = Convert5To8(bitfieldExtract(c1, 0, 5));
 | |
|         uint blue2 = Convert5To8(bitfieldExtract(c2, 0, 5));
 | |
|         uint green1 = Convert6To8(bitfieldExtract(c1, 5, 6));
 | |
|         uint green2 = Convert6To8(bitfieldExtract(c2, 5, 6));
 | |
|         uint red1 = Convert5To8(bitfieldExtract(c1, 11, 5));
 | |
|         uint red2 = Convert5To8(bitfieldExtract(c2, 11, 5));
 | |
| 
 | |
|         // Determine the four colors the block can use.
 | |
|         // It's quicker to just precalculate all four colors rather than branching on the index.
 | |
|         // NOTE: These must be masked with 0xFF. This is done at the normalization stage below.
 | |
|         uvec4 color0, color1, color2, color3;
 | |
|         color0 = uvec4(red1, green1, blue1, 255u);
 | |
|         color1 = uvec4(red2, green2, blue2, 255u);
 | |
|         if (c1 > c2)
 | |
|         {
 | |
|           color2 = uvec4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u);
 | |
|           color3 = uvec4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           color2 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u);
 | |
|           color3 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u);
 | |
|         }
 | |
| 
 | |
|         // Calculate the texel coordinates that we will write to.
 | |
|         // The divides/modulo here should be turned into a shift/binary AND.
 | |
|         uint local_y = thread_in_block / BLOCK_SIZE_X;
 | |
|         uint local_x = thread_in_block % BLOCK_SIZE_X;
 | |
|         uint global_x = block_coords.x * BLOCK_SIZE_X + local_x;
 | |
|         uint global_y = block_coords.y * BLOCK_SIZE_Y + local_y;
 | |
| 
 | |
|         // Use the coordinates within the block to shift the 32-bit value containing
 | |
|         // all 16 indices to a single 2-bit index.
 | |
|         uint index = bitfieldExtract(raw_data.y, int((local_y * 8u) + (6u - local_x * 2u)), 2);
 | |
| 
 | |
|         // Select the un-normalized color from the precalculated color array.
 | |
|         // Using a switch statement here removes the need for dynamic indexing of an array.
 | |
|         uvec4 color;
 | |
|         switch (index)
 | |
|         {
 | |
|         case 0u:  color = color0;   break;
 | |
|         case 1u:  color = color1;   break;
 | |
|         case 2u:  color = color2;   break;
 | |
|         case 3u:  color = color3;   break;
 | |
|         default:  color = color0;   break;
 | |
|         }
 | |
| 
 | |
|         // Normalize and write to the output image.
 | |
|         vec4 norm_color = vec4(color & 0xFFu) / 255.0;
 | |
|         imageStore(output_image, ivec3(ivec2(uvec2(global_x, global_y)), 0), norm_color);
 | |
|       }
 | |
|       )"}},
 | |
|     {GX_TF_C4,
 | |
|      {BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(GX_TF_C4)), 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 8x8 blocks, 4 bits per pixel
 | |
|         // We need to do the tiling manually here because the texel size is smaller than
 | |
|         // the size of the buffer elements.
 | |
|         uint2 block = coords.xy / 8u;
 | |
|         uint2 offset = coords.xy % 8u;
 | |
|         uint buffer_pos = u_src_offset;
 | |
|         buffer_pos += block.y * u_src_row_stride;
 | |
|         buffer_pos += block.x * 32u;
 | |
|         buffer_pos += offset.y * 4u;
 | |
|         buffer_pos += offset.x / 2u;
 | |
| 
 | |
|         // Select high nibble for odd texels, low for even.
 | |
|         uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
 | |
|         uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu);
 | |
|         vec4 norm_color = GetPaletteColorNormalized(index);
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
| 
 | |
|       )"}},
 | |
|     {GX_TF_C8,
 | |
|      {BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(GX_TF_C8)), 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 8x4 blocks, 8 bits per pixel
 | |
|         uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
 | |
|         uint index = texelFetch(s_input_buffer, int(buffer_pos)).x;
 | |
|         vec4 norm_color = GetPaletteColorNormalized(index);
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
|       )"}},
 | |
|     {GX_TF_C14X2,
 | |
|      {BUFFER_FORMAT_R16_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(GX_TF_C14X2)), 8, 8, false,
 | |
|       R"(
 | |
|       layout(local_size_x = 8, local_size_y = 8) in;
 | |
| 
 | |
|       void main()
 | |
|       {
 | |
|         uvec2 coords = gl_GlobalInvocationID.xy;
 | |
| 
 | |
|         // Tiled in 4x4 blocks, 16 bits per pixel
 | |
|         uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
 | |
|         uint index = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x) & 0x3FFFu;
 | |
|         vec4 norm_color = GetPaletteColorNormalized(index);
 | |
|         imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
 | |
|       }
 | |
|       )"}}};
 | |
| 
 | |
| static const std::array<u32, BUFFER_FORMAT_COUNT> s_buffer_bytes_per_texel = {{
 | |
|     1,  // BUFFER_FORMAT_R8_UINT
 | |
|     2,  // BUFFER_FORMAT_R16_UINT
 | |
|     8,  // BUFFER_FORMAT_R32G32_UINT
 | |
| }};
 | |
| 
 | |
| const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format)
 | |
| {
 | |
|   auto iter = s_decoding_shader_info.find(format);
 | |
|   return iter != s_decoding_shader_info.end() ? &iter->second : nullptr;
 | |
| }
 | |
| 
 | |
| u32 GetBytesPerBufferElement(BufferFormat buffer_format)
 | |
| {
 | |
|   return s_buffer_bytes_per_texel[buffer_format];
 | |
| }
 | |
| 
 | |
| std::pair<u32, u32> GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height)
 | |
| {
 | |
|   // Flatten to a single dimension?
 | |
|   if (info->group_flatten)
 | |
|     return {(width * height + (info->group_size_x - 1)) / info->group_size_x, 1};
 | |
| 
 | |
|   return {(width + (info->group_size_x - 1)) / info->group_size_x,
 | |
|           (height + (info->group_size_y - 1)) / info->group_size_y};
 | |
| }
 | |
| 
 | |
| std::string GenerateDecodingShader(TextureFormat format, TlutFormat palette_format,
 | |
|                                    APIType api_type)
 | |
| {
 | |
|   const DecodingShaderInfo* info = GetDecodingShaderInfo(format);
 | |
|   if (!info)
 | |
|     return "";
 | |
| 
 | |
|   std::stringstream ss;
 | |
|   switch (palette_format)
 | |
|   {
 | |
|   case GX_TL_IA8:
 | |
|     ss << "#define PALETTE_FORMAT_IA8 1\n";
 | |
|     break;
 | |
|   case GX_TL_RGB565:
 | |
|     ss << "#define PALETTE_FORMAT_RGB565 1\n";
 | |
|     break;
 | |
|   case GX_TL_RGB5A3:
 | |
|     ss << "#define PALETTE_FORMAT_RGB5A3 1\n";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   ss << decoding_shader_header;
 | |
|   ss << info->shader_body;
 | |
| 
 | |
|   return ss.str();
 | |
| }
 | |
| 
 | |
| }  // namespace
 |