mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-25 17:39:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			365 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			365 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2008 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <numeric>
 | |
| 
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/MathUtil.h"
 | |
| 
 | |
| namespace MathUtil
 | |
| {
 | |
| 
 | |
| u32 ClassifyDouble(double dvalue)
 | |
| {
 | |
| 	// TODO: Optimize the below to be as fast as possible.
 | |
| 	IntDouble value(dvalue);
 | |
| 	u64 sign = value.i & DOUBLE_SIGN;
 | |
| 	u64 exp  = value.i & DOUBLE_EXP;
 | |
| 	if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
 | |
| 	{
 | |
| 		// Nice normalized number.
 | |
| 		return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		u64 mantissa = value.i & DOUBLE_FRAC;
 | |
| 		if (mantissa)
 | |
| 		{
 | |
| 			if (exp)
 | |
| 			{
 | |
| 				return PPC_FPCLASS_QNAN;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Denormalized number.
 | |
| 				return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
 | |
| 			}
 | |
| 		}
 | |
| 		else if (exp)
 | |
| 		{
 | |
| 			//Infinite
 | |
| 			return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			//Zero
 | |
| 			return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| u32 ClassifyFloat(float fvalue)
 | |
| {
 | |
| 	// TODO: Optimize the below to be as fast as possible.
 | |
| 	IntFloat value(fvalue);
 | |
| 	u32 sign = value.i & FLOAT_SIGN;
 | |
| 	u32 exp  = value.i & FLOAT_EXP;
 | |
| 	if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
 | |
| 	{
 | |
| 		// Nice normalized number.
 | |
| 		return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		u32 mantissa = value.i & FLOAT_FRAC;
 | |
| 		if (mantissa)
 | |
| 		{
 | |
| 			if (exp)
 | |
| 			{
 | |
| 				return PPC_FPCLASS_QNAN; // Quiet NAN
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Denormalized number.
 | |
| 				return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
 | |
| 			}
 | |
| 		}
 | |
| 		else if (exp)
 | |
| 		{
 | |
| 			// Infinite
 | |
| 			return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			//Zero
 | |
| 			return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| const int frsqrte_expected_base[] =
 | |
| {
 | |
| 	0x3ffa000, 0x3c29000, 0x38aa000, 0x3572000,
 | |
| 	0x3279000, 0x2fb7000, 0x2d26000, 0x2ac0000,
 | |
| 	0x2881000, 0x2665000, 0x2468000, 0x2287000,
 | |
| 	0x20c1000, 0x1f12000, 0x1d79000, 0x1bf4000,
 | |
| 	0x1a7e800, 0x17cb800, 0x1552800, 0x130c000,
 | |
| 	0x10f2000, 0x0eff000, 0x0d2e000, 0x0b7c000,
 | |
| 	0x09e5000, 0x0867000, 0x06ff000, 0x05ab800,
 | |
| 	0x046a000, 0x0339800, 0x0218800, 0x0105800,
 | |
| };
 | |
| const int frsqrte_expected_dec[] =
 | |
| {
 | |
| 	0x7a4, 0x700, 0x670, 0x5f2,
 | |
| 	0x584, 0x524, 0x4cc, 0x47e,
 | |
| 	0x43a, 0x3fa, 0x3c2, 0x38e,
 | |
| 	0x35e, 0x332, 0x30a, 0x2e6,
 | |
| 	0x568, 0x4f3, 0x48d, 0x435,
 | |
| 	0x3e7, 0x3a2, 0x365, 0x32e,
 | |
| 	0x2fc, 0x2d0, 0x2a8, 0x283,
 | |
| 	0x261, 0x243, 0x226, 0x20b,
 | |
| };
 | |
| 
 | |
| double ApproximateReciprocalSquareRoot(double val)
 | |
| {
 | |
| 	union
 | |
| 	{
 | |
| 		double valf;
 | |
| 		s64 vali;
 | |
| 	};
 | |
| 	valf = val;
 | |
| 	s64 mantissa = vali & ((1LL << 52) - 1);
 | |
| 	s64 sign = vali & (1ULL << 63);
 | |
| 	s64 exponent = vali & (0x7FFLL << 52);
 | |
| 
 | |
| 	// Special case 0
 | |
| 	if (mantissa == 0 && exponent == 0)
 | |
| 		return sign ? -std::numeric_limits<double>::infinity() :
 | |
| 		std::numeric_limits<double>::infinity();
 | |
| 	// Special case NaN-ish numbers
 | |
| 	if (exponent == (0x7FFLL << 52))
 | |
| 	{
 | |
| 		if (mantissa == 0)
 | |
| 		{
 | |
| 			if (sign)
 | |
| 				return std::numeric_limits<double>::quiet_NaN();
 | |
| 
 | |
| 			return 0.0;
 | |
| 		}
 | |
| 
 | |
| 		return 0.0 + valf;
 | |
| 	}
 | |
| 
 | |
| 	// Negative numbers return NaN
 | |
| 	if (sign)
 | |
| 		return std::numeric_limits<double>::quiet_NaN();
 | |
| 
 | |
| 	if (!exponent)
 | |
| 	{
 | |
| 		// "Normalize" denormal values
 | |
| 		do
 | |
| 		{
 | |
| 			exponent -= 1LL << 52;
 | |
| 			mantissa <<= 1;
 | |
| 		} while (!(mantissa & (1LL << 52)));
 | |
| 		mantissa &= (1LL << 52) - 1;
 | |
| 		exponent += 1LL << 52;
 | |
| 	}
 | |
| 
 | |
| 	bool odd_exponent = !(exponent & (1LL << 52));
 | |
| 	exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);
 | |
| 
 | |
| 	int i = (int)(mantissa >> 37);
 | |
| 	vali = sign | exponent;
 | |
| 	int index = i / 2048 + (odd_exponent ? 16 : 0);
 | |
| 	vali |= (s64)(frsqrte_expected_base[index] - frsqrte_expected_dec[index] * (i % 2048)) << 26;
 | |
| 	return valf;
 | |
| }
 | |
| 
 | |
| const int fres_expected_base[] =
 | |
| {
 | |
| 	0x7ff800, 0x783800, 0x70ea00, 0x6a0800,
 | |
| 	0x638800, 0x5d6200, 0x579000, 0x520800,
 | |
| 	0x4cc800, 0x47ca00, 0x430800, 0x3e8000,
 | |
| 	0x3a2c00, 0x360800, 0x321400, 0x2e4a00,
 | |
| 	0x2aa800, 0x272c00, 0x23d600, 0x209e00,
 | |
| 	0x1d8800, 0x1a9000, 0x17ae00, 0x14f800,
 | |
| 	0x124400, 0x0fbe00, 0x0d3800, 0x0ade00,
 | |
| 	0x088400, 0x065000, 0x041c00, 0x020c00,
 | |
| };
 | |
| const int fres_expected_dec[] =
 | |
| {
 | |
| 	0x3e1, 0x3a7, 0x371, 0x340,
 | |
| 	0x313, 0x2ea, 0x2c4, 0x2a0,
 | |
| 	0x27f, 0x261, 0x245, 0x22a,
 | |
| 	0x212, 0x1fb, 0x1e5, 0x1d1,
 | |
| 	0x1be, 0x1ac, 0x19b, 0x18b,
 | |
| 	0x17c, 0x16e, 0x15b, 0x15b,
 | |
| 	0x143, 0x143, 0x12d, 0x12d,
 | |
| 	0x11a, 0x11a, 0x108, 0x106,
 | |
| };
 | |
| 
 | |
| // Used by fres and ps_res.
 | |
| double ApproximateReciprocal(double val)
 | |
| {
 | |
| 	union
 | |
| 	{
 | |
| 		double valf;
 | |
| 		s64 vali;
 | |
| 	};
 | |
| 
 | |
| 	valf = val;
 | |
| 	s64 mantissa = vali & ((1LL << 52) - 1);
 | |
| 	s64 sign = vali & (1ULL << 63);
 | |
| 	s64 exponent = vali & (0x7FFLL << 52);
 | |
| 
 | |
| 	// Special case 0
 | |
| 	if (mantissa == 0 && exponent == 0)
 | |
| 		return std::copysign(std::numeric_limits<double>::infinity(), valf);
 | |
| 
 | |
| 	// Special case NaN-ish numbers
 | |
| 	if (exponent == (0x7FFLL << 52))
 | |
| 	{
 | |
| 		if (mantissa == 0)
 | |
| 			return std::copysign(0.0, valf);
 | |
| 		return 0.0 + valf;
 | |
| 	}
 | |
| 
 | |
| 	// Special case small inputs
 | |
| 	if (exponent < (895LL << 52))
 | |
| 		return std::copysign(std::numeric_limits<float>::max(), valf);
 | |
| 
 | |
| 	// Special case large inputs
 | |
| 	if (exponent >= (1149LL << 52))
 | |
| 		return std::copysign(0.0, valf);
 | |
| 
 | |
| 	exponent = (0x7FDLL << 52) - exponent;
 | |
| 
 | |
| 	int i = (int)(mantissa >> 37);
 | |
| 	vali = sign | exponent;
 | |
| 	vali |= (s64)(fres_expected_base[i / 1024] - (fres_expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29;
 | |
| 	return valf;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| inline void MatrixMul(int n, const float *a, const float *b, float *result)
 | |
| {
 | |
| 	for (int i = 0; i < n; ++i)
 | |
| 	{
 | |
| 		for (int j = 0; j < n; ++j)
 | |
| 		{
 | |
| 			float temp = 0;
 | |
| 			for (int k = 0; k < n; ++k)
 | |
| 			{
 | |
| 				temp += a[i * n + k] * b[k * n + j];
 | |
| 			}
 | |
| 			result[i * n + j] = temp;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Calculate sum of a float list
 | |
| float MathFloatVectorSum(const std::vector<float>& Vec)
 | |
| {
 | |
| 	return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
 | |
| }
 | |
| 
 | |
| void Matrix33::LoadIdentity(Matrix33 &mtx)
 | |
| {
 | |
| 	memset(mtx.data, 0, sizeof(mtx.data));
 | |
| 	mtx.data[0] = 1.0f;
 | |
| 	mtx.data[4] = 1.0f;
 | |
| 	mtx.data[8] = 1.0f;
 | |
| }
 | |
| 
 | |
| void Matrix33::RotateX(Matrix33 &mtx, float rad)
 | |
| {
 | |
| 	float s = sin(rad);
 | |
| 	float c = cos(rad);
 | |
| 	memset(mtx.data, 0, sizeof(mtx.data));
 | |
| 	mtx.data[0] = 1;
 | |
| 	mtx.data[4] = c;
 | |
| 	mtx.data[5] = -s;
 | |
| 	mtx.data[7] = s;
 | |
| 	mtx.data[8] = c;
 | |
| }
 | |
| void Matrix33::RotateY(Matrix33 &mtx, float rad)
 | |
| {
 | |
| 	float s = sin(rad);
 | |
| 	float c = cos(rad);
 | |
| 	memset(mtx.data, 0, sizeof(mtx.data));
 | |
| 	mtx.data[0] = c;
 | |
| 	mtx.data[2] = s;
 | |
| 	mtx.data[4] = 1;
 | |
| 	mtx.data[6] = -s;
 | |
| 	mtx.data[8] = c;
 | |
| }
 | |
| 
 | |
| void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
 | |
| {
 | |
| 	MatrixMul(3, a.data, b.data, result.data);
 | |
| }
 | |
| 
 | |
| void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
 | |
| {
 | |
| 	for (int i = 0; i < 3; ++i)
 | |
| 	{
 | |
| 		result[i] = 0;
 | |
| 
 | |
| 		for (int k = 0; k < 3; ++k)
 | |
| 		{
 | |
| 			result[i] += a.data[i * 3 + k] * vec[k];
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Matrix44::LoadIdentity(Matrix44 &mtx)
 | |
| {
 | |
| 	memset(mtx.data, 0, sizeof(mtx.data));
 | |
| 	mtx.data[0] = 1.0f;
 | |
| 	mtx.data[5] = 1.0f;
 | |
| 	mtx.data[10] = 1.0f;
 | |
| 	mtx.data[15] = 1.0f;
 | |
| }
 | |
| 
 | |
| void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
 | |
| {
 | |
| 	for (int i = 0; i < 3; ++i)
 | |
| 	{
 | |
| 		for (int j = 0; j < 3; ++j)
 | |
| 		{
 | |
| 			mtx.data[i * 4 + j] = m33.data[i * 3 + j];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 3; ++i)
 | |
| 	{
 | |
| 		mtx.data[i * 4 + 3] = 0;
 | |
| 		mtx.data[i + 12] = 0;
 | |
| 	}
 | |
| 	mtx.data[15] = 1.0f;
 | |
| }
 | |
| 
 | |
| void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
 | |
| {
 | |
| 	for (int i = 0; i < 16; ++i)
 | |
| 	{
 | |
| 		mtx.data[i] = mtxArray[i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
 | |
| {
 | |
| 	LoadIdentity(mtx);
 | |
| 	mtx.data[3] = vec[0];
 | |
| 	mtx.data[7] = vec[1];
 | |
| 	mtx.data[11] = vec[2];
 | |
| }
 | |
| 
 | |
| void Matrix44::Shear(Matrix44 &mtx, const float a, const float b)
 | |
| {
 | |
| 	LoadIdentity(mtx);
 | |
| 	mtx.data[2] = a;
 | |
| 	mtx.data[6] = b;
 | |
| }
 | |
| 
 | |
| void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
 | |
| {
 | |
| 	MatrixMul(4, a.data, b.data, result.data);
 | |
| }
 | |
| 
 |