mirror of
				https://github.com/dolphin-emu/dolphin.git
				synced 2025-10-27 10:29:07 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			491 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			491 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2008 Dolphin Emulator Project
 | |
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| 
 | |
| #include "VideoCommon/VertexShaderManager.h"
 | |
| 
 | |
| #include <array>
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| 
 | |
| #include "Common/ChunkFile.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/Logging/Log.h"
 | |
| #include "Common/Matrix.h"
 | |
| #include "VideoCommon/BPFunctions.h"
 | |
| #include "VideoCommon/BPMemory.h"
 | |
| #include "VideoCommon/CPMemory.h"
 | |
| #include "VideoCommon/FramebufferManager.h"
 | |
| #include "VideoCommon/FreeLookCamera.h"
 | |
| #include "VideoCommon/GraphicsModSystem/Runtime/GraphicsModActionData.h"
 | |
| #include "VideoCommon/GraphicsModSystem/Runtime/GraphicsModManager.h"
 | |
| #include "VideoCommon/Statistics.h"
 | |
| #include "VideoCommon/VertexManagerBase.h"
 | |
| #include "VideoCommon/VideoCommon.h"
 | |
| #include "VideoCommon/VideoConfig.h"
 | |
| #include "VideoCommon/XFMemory.h"
 | |
| #include "VideoCommon/XFStateManager.h"
 | |
| 
 | |
| void VertexShaderManager::Init()
 | |
| {
 | |
|   // Initialize state tracking variables
 | |
|   m_projection_graphics_mod_change = false;
 | |
| 
 | |
|   constants = {};
 | |
| 
 | |
|   m_projection_matrix = Common::Matrix44::Identity().data;
 | |
| 
 | |
|   dirty = true;
 | |
| }
 | |
| 
 | |
| Common::Matrix44 VertexShaderManager::LoadProjectionMatrix()
 | |
| {
 | |
|   const auto& rawProjection = xfmem.projection.rawProjection;
 | |
| 
 | |
|   switch (xfmem.projection.type)
 | |
|   {
 | |
|   case ProjectionType::Perspective:
 | |
|   {
 | |
|     const Common::Vec2 fov_multiplier = g_freelook_camera.IsActive() ?
 | |
|                                             g_freelook_camera.GetFieldOfViewMultiplier() :
 | |
|                                             Common::Vec2{1, 1};
 | |
|     m_projection_matrix[0] = rawProjection[0] * g_ActiveConfig.fAspectRatioHackW * fov_multiplier.x;
 | |
|     m_projection_matrix[1] = 0.0f;
 | |
|     m_projection_matrix[2] = rawProjection[1] * g_ActiveConfig.fAspectRatioHackW * fov_multiplier.x;
 | |
|     m_projection_matrix[3] = 0.0f;
 | |
| 
 | |
|     m_projection_matrix[4] = 0.0f;
 | |
|     m_projection_matrix[5] = rawProjection[2] * g_ActiveConfig.fAspectRatioHackH * fov_multiplier.y;
 | |
|     m_projection_matrix[6] = rawProjection[3] * g_ActiveConfig.fAspectRatioHackH * fov_multiplier.y;
 | |
|     m_projection_matrix[7] = 0.0f;
 | |
| 
 | |
|     m_projection_matrix[8] = 0.0f;
 | |
|     m_projection_matrix[9] = 0.0f;
 | |
|     m_projection_matrix[10] = rawProjection[4];
 | |
|     m_projection_matrix[11] = rawProjection[5];
 | |
| 
 | |
|     m_projection_matrix[12] = 0.0f;
 | |
|     m_projection_matrix[13] = 0.0f;
 | |
| 
 | |
|     m_projection_matrix[14] = -1.0f;
 | |
|     m_projection_matrix[15] = 0.0f;
 | |
| 
 | |
|     g_stats.gproj = m_projection_matrix;
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   case ProjectionType::Orthographic:
 | |
|   {
 | |
|     m_projection_matrix[0] = rawProjection[0];
 | |
|     m_projection_matrix[1] = 0.0f;
 | |
|     m_projection_matrix[2] = 0.0f;
 | |
|     m_projection_matrix[3] = rawProjection[1];
 | |
| 
 | |
|     m_projection_matrix[4] = 0.0f;
 | |
|     m_projection_matrix[5] = rawProjection[2];
 | |
|     m_projection_matrix[6] = 0.0f;
 | |
|     m_projection_matrix[7] = rawProjection[3];
 | |
| 
 | |
|     m_projection_matrix[8] = 0.0f;
 | |
|     m_projection_matrix[9] = 0.0f;
 | |
|     m_projection_matrix[10] = rawProjection[4];
 | |
|     m_projection_matrix[11] = rawProjection[5];
 | |
| 
 | |
|     m_projection_matrix[12] = 0.0f;
 | |
|     m_projection_matrix[13] = 0.0f;
 | |
| 
 | |
|     m_projection_matrix[14] = 0.0f;
 | |
|     m_projection_matrix[15] = 1.0f;
 | |
| 
 | |
|     g_stats.g2proj = m_projection_matrix;
 | |
|     g_stats.proj = rawProjection;
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   default:
 | |
|     ERROR_LOG_FMT(VIDEO, "Unknown projection type: {}", xfmem.projection.type);
 | |
|   }
 | |
| 
 | |
|   PRIM_LOG("Projection: {} {} {} {} {} {}", rawProjection[0], rawProjection[1], rawProjection[2],
 | |
|            rawProjection[3], rawProjection[4], rawProjection[5]);
 | |
| 
 | |
|   auto corrected_matrix = Common::Matrix44::FromArray(m_projection_matrix);
 | |
| 
 | |
|   if (g_freelook_camera.IsActive() && xfmem.projection.type == ProjectionType::Perspective)
 | |
|     corrected_matrix *= g_freelook_camera.GetView();
 | |
| 
 | |
|   g_freelook_camera.GetController()->SetClean();
 | |
| 
 | |
|   return corrected_matrix;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::SetProjectionMatrix(XFStateManager& xf_state_manager)
 | |
| {
 | |
|   if (xf_state_manager.DidProjectionChange() || g_freelook_camera.GetController()->IsDirty())
 | |
|   {
 | |
|     xf_state_manager.ResetProjection();
 | |
|     auto corrected_matrix = LoadProjectionMatrix();
 | |
|     memcpy(constants.projection.data(), corrected_matrix.data.data(), 4 * sizeof(float4));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool VertexShaderManager::UseVertexDepthRange()
 | |
| {
 | |
|   // Backend has full support for unrestricted depth ranges including the ability to clamp the
 | |
|   // final depth value to MAX_EFB_DEPTH.
 | |
|   if (g_backend_info.bSupportsUnrestrictedDepthRange)
 | |
|     return false;
 | |
| 
 | |
|   // We can't compute the depth range in the vertex shader if we don't support depth clamp.
 | |
|   if (!g_backend_info.bSupportsDepthClamp)
 | |
|     return false;
 | |
| 
 | |
|   // We need a full depth range if a ztexture is used.
 | |
|   if (bpmem.ztex2.op != ZTexOp::Disabled && !bpmem.zcontrol.early_ztest)
 | |
|     return true;
 | |
| 
 | |
|   // If an inverted depth range is unsupported, we also need to check if the range is inverted.
 | |
|   if (!g_backend_info.bSupportsReversedDepthRange)
 | |
|   {
 | |
|     if (xfmem.viewport.zRange < 0.0f)
 | |
|       return true;
 | |
| 
 | |
|     if (xfmem.viewport.zRange > xfmem.viewport.farZ)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // If an oversized depth range or a ztexture is used, we need to calculate the depth range
 | |
|   // in the vertex shader.
 | |
|   return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f;
 | |
| }
 | |
| 
 | |
| // Syncs the shader constant buffers with xfmem
 | |
| // TODO: A cleaner way to control the matrices without making a mess in the parameters field
 | |
| void VertexShaderManager::SetConstants(const std::vector<std::string>& textures,
 | |
|                                        XFStateManager& xf_state_manager)
 | |
| {
 | |
|   if (constants.missing_color_hex != g_ActiveConfig.iMissingColorValue)
 | |
|   {
 | |
|     const float a = (g_ActiveConfig.iMissingColorValue) & 0xFF;
 | |
|     const float b = (g_ActiveConfig.iMissingColorValue >> 8) & 0xFF;
 | |
|     const float g = (g_ActiveConfig.iMissingColorValue >> 16) & 0xFF;
 | |
|     const float r = (g_ActiveConfig.iMissingColorValue >> 24) & 0xFF;
 | |
|     constants.missing_color_hex = g_ActiveConfig.iMissingColorValue;
 | |
|     constants.missing_color_value = {r / 255, g / 255, b / 255, a / 255};
 | |
| 
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   const auto per_vertex_transform_matrix_changes =
 | |
|       xf_state_manager.GetPerVertexTransformMatrixChanges();
 | |
|   if (per_vertex_transform_matrix_changes[0] >= 0)
 | |
|   {
 | |
|     int startn = per_vertex_transform_matrix_changes[0] / 4;
 | |
|     int endn = (per_vertex_transform_matrix_changes[1] + 3) / 4;
 | |
|     memcpy(constants.transformmatrices[startn].data(), &xfmem.posMatrices[startn * 4],
 | |
|            (endn - startn) * sizeof(float4));
 | |
|     dirty = true;
 | |
|     xf_state_manager.ResetPerVertexTransformMatrixChanges();
 | |
|   }
 | |
| 
 | |
|   const auto per_vertex_normal_matrices_changed =
 | |
|       xf_state_manager.GetPerVertexNormalMatrixChanges();
 | |
|   if (per_vertex_normal_matrices_changed[0] >= 0)
 | |
|   {
 | |
|     int startn = per_vertex_normal_matrices_changed[0] / 3;
 | |
|     int endn = (per_vertex_normal_matrices_changed[1] + 2) / 3;
 | |
|     for (int i = startn; i < endn; i++)
 | |
|     {
 | |
|       memcpy(constants.normalmatrices[i].data(), &xfmem.normalMatrices[3 * i], 12);
 | |
|     }
 | |
|     dirty = true;
 | |
|     xf_state_manager.ResetPerVertexNormalMatrixChanges();
 | |
|   }
 | |
| 
 | |
|   const auto post_transform_matrices_changed = xf_state_manager.GetPostTransformMatrixChanges();
 | |
|   if (post_transform_matrices_changed[0] >= 0)
 | |
|   {
 | |
|     int startn = post_transform_matrices_changed[0] / 4;
 | |
|     int endn = (post_transform_matrices_changed[1] + 3) / 4;
 | |
|     memcpy(constants.posttransformmatrices[startn].data(), &xfmem.postMatrices[startn * 4],
 | |
|            (endn - startn) * sizeof(float4));
 | |
|     dirty = true;
 | |
|     xf_state_manager.ResetPostTransformMatrixChanges();
 | |
|   }
 | |
| 
 | |
|   const auto light_changes = xf_state_manager.GetLightsChanged();
 | |
|   if (light_changes[0] >= 0)
 | |
|   {
 | |
|     // TODO: Outdated comment
 | |
|     // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
 | |
|     const int istart = light_changes[0] / 0x10;
 | |
|     const int iend = (light_changes[1] + 15) / 0x10;
 | |
| 
 | |
|     for (int i = istart; i < iend; ++i)
 | |
|     {
 | |
|       const Light& light = xfmem.lights[i];
 | |
|       VertexShaderConstants::Light& dstlight = constants.lights[i];
 | |
| 
 | |
|       // xfmem.light.color is packed as abgr in u8[4], so we have to swap the order
 | |
|       dstlight.color[0] = light.color[3];
 | |
|       dstlight.color[1] = light.color[2];
 | |
|       dstlight.color[2] = light.color[1];
 | |
|       dstlight.color[3] = light.color[0];
 | |
| 
 | |
|       dstlight.cosatt[0] = light.cosatt[0];
 | |
|       dstlight.cosatt[1] = light.cosatt[1];
 | |
|       dstlight.cosatt[2] = light.cosatt[2];
 | |
| 
 | |
|       if (fabs(light.distatt[0]) < 0.00001f && fabs(light.distatt[1]) < 0.00001f &&
 | |
|           fabs(light.distatt[2]) < 0.00001f)
 | |
|       {
 | |
|         // dist attenuation, make sure not equal to 0!!!
 | |
|         dstlight.distatt[0] = .00001f;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         dstlight.distatt[0] = light.distatt[0];
 | |
|       }
 | |
|       dstlight.distatt[1] = light.distatt[1];
 | |
|       dstlight.distatt[2] = light.distatt[2];
 | |
| 
 | |
|       dstlight.pos[0] = light.dpos[0];
 | |
|       dstlight.pos[1] = light.dpos[1];
 | |
|       dstlight.pos[2] = light.dpos[2];
 | |
| 
 | |
|       // TODO: Hardware testing is needed to confirm that this normalization is correct
 | |
|       auto sanitize = [](float f) {
 | |
|         if (std::isnan(f))
 | |
|           return 0.0f;
 | |
|         else if (std::isinf(f))
 | |
|           return f > 0.0f ? 1.0f : -1.0f;
 | |
|         else
 | |
|           return f;
 | |
|       };
 | |
|       double norm = double(light.ddir[0]) * double(light.ddir[0]) +
 | |
|                     double(light.ddir[1]) * double(light.ddir[1]) +
 | |
|                     double(light.ddir[2]) * double(light.ddir[2]);
 | |
|       norm = 1.0 / sqrt(norm);
 | |
|       dstlight.dir[0] = sanitize(static_cast<float>(light.ddir[0] * norm));
 | |
|       dstlight.dir[1] = sanitize(static_cast<float>(light.ddir[1] * norm));
 | |
|       dstlight.dir[2] = sanitize(static_cast<float>(light.ddir[2] * norm));
 | |
|     }
 | |
|     dirty = true;
 | |
| 
 | |
|     xf_state_manager.ResetLightsChanged();
 | |
|   }
 | |
| 
 | |
|   for (int i : xf_state_manager.GetMaterialChanges())
 | |
|   {
 | |
|     u32 data = i >= 2 ? xfmem.matColor[i - 2] : xfmem.ambColor[i];
 | |
|     constants.materials[i][0] = (data >> 24) & 0xFF;
 | |
|     constants.materials[i][1] = (data >> 16) & 0xFF;
 | |
|     constants.materials[i][2] = (data >> 8) & 0xFF;
 | |
|     constants.materials[i][3] = data & 0xFF;
 | |
|     dirty = true;
 | |
|   }
 | |
|   xf_state_manager.ResetMaterialChanges();
 | |
| 
 | |
|   if (xf_state_manager.DidPosNormalChange())
 | |
|   {
 | |
|     xf_state_manager.ResetPosNormalChange();
 | |
|     const float* pos = &xfmem.posMatrices[g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4];
 | |
|     const float* norm =
 | |
|         &xfmem.normalMatrices[3 * (g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31)];
 | |
| 
 | |
|     memcpy(constants.posnormalmatrix.data(), pos, 3 * sizeof(float4));
 | |
|     memcpy(constants.posnormalmatrix[3].data(), norm, 3 * sizeof(float));
 | |
|     memcpy(constants.posnormalmatrix[4].data(), norm + 3, 3 * sizeof(float));
 | |
|     memcpy(constants.posnormalmatrix[5].data(), norm + 6, 3 * sizeof(float));
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (xf_state_manager.DidTexMatrixAChange())
 | |
|   {
 | |
|     xf_state_manager.ResetTexMatrixAChange();
 | |
|     const std::array<const float*, 4> pos_matrix_ptrs{
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4],
 | |
|     };
 | |
| 
 | |
|     for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i)
 | |
|     {
 | |
|       memcpy(constants.texmatrices[3 * i].data(), pos_matrix_ptrs[i], 3 * sizeof(float4));
 | |
|     }
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (xf_state_manager.DidTexMatrixBChange())
 | |
|   {
 | |
|     xf_state_manager.ResetTexMatrixBChange();
 | |
|     const std::array<const float*, 4> pos_matrix_ptrs{
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4],
 | |
|     };
 | |
| 
 | |
|     for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i)
 | |
|     {
 | |
|       memcpy(constants.texmatrices[3 * i + 12].data(), pos_matrix_ptrs[i], 3 * sizeof(float4));
 | |
|     }
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (xf_state_manager.DidViewportChange())
 | |
|   {
 | |
|     xf_state_manager.ResetViewportChange();
 | |
| 
 | |
|     // The console GPU places the pixel center at 7/12 unless antialiasing
 | |
|     // is enabled, while D3D and OpenGL place it at 0.5. See the comment
 | |
|     // in VertexShaderGen.cpp for details.
 | |
|     // NOTE: If we ever emulate antialiasing, the sample locations set by
 | |
|     // BP registers 0x01-0x04 need to be considered here.
 | |
|     const float pixel_center_correction = 7.0f / 12.0f - 0.5f;
 | |
|     const bool bUseVertexRounding = g_ActiveConfig.UseVertexRounding();
 | |
|     const float viewport_width = bUseVertexRounding ?
 | |
|                                      (2.f * xfmem.viewport.wd) :
 | |
|                                      g_framebuffer_manager->EFBToScaledXf(2.f * xfmem.viewport.wd);
 | |
|     const float viewport_height = bUseVertexRounding ?
 | |
|                                       (2.f * xfmem.viewport.ht) :
 | |
|                                       g_framebuffer_manager->EFBToScaledXf(2.f * xfmem.viewport.ht);
 | |
|     const float pixel_size_x = 2.f / viewport_width;
 | |
|     const float pixel_size_y = 2.f / viewport_height;
 | |
|     constants.pixelcentercorrection[0] = pixel_center_correction * pixel_size_x;
 | |
|     constants.pixelcentercorrection[1] = pixel_center_correction * pixel_size_y;
 | |
| 
 | |
|     // By default we don't change the depth value at all in the vertex shader.
 | |
|     constants.pixelcentercorrection[2] = 1.0f;
 | |
|     constants.pixelcentercorrection[3] = 0.0f;
 | |
| 
 | |
|     constants.viewport[0] = (2.f * xfmem.viewport.wd);
 | |
|     constants.viewport[1] = (2.f * xfmem.viewport.ht);
 | |
| 
 | |
|     if (UseVertexDepthRange())
 | |
|     {
 | |
|       // Oversized depth ranges are handled in the vertex shader. We need to reverse
 | |
|       // the far value to use the reversed-Z trick.
 | |
|       if (g_backend_info.bSupportsReversedDepthRange)
 | |
|       {
 | |
|         // Sometimes the console also tries to use the reversed-Z trick. We can only do
 | |
|         // that with the expected accuracy if the backend can reverse the depth range.
 | |
|         constants.pixelcentercorrection[2] = fabs(xfmem.viewport.zRange) / 16777215.0f;
 | |
|         if (xfmem.viewport.zRange < 0.0f)
 | |
|           constants.pixelcentercorrection[3] = xfmem.viewport.farZ / 16777215.0f;
 | |
|         else
 | |
|           constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // For backends that don't support reversing the depth range we can still render
 | |
|         // cases where the console uses the reversed-Z trick. But we simply can't provide
 | |
|         // the expected accuracy, which might result in z-fighting.
 | |
|         constants.pixelcentercorrection[2] = xfmem.viewport.zRange / 16777215.0f;
 | |
|         constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     dirty = true;
 | |
|     BPFunctions::SetScissorAndViewport();
 | |
|     g_stats.AddScissorRect();
 | |
|   }
 | |
| 
 | |
|   std::vector<GraphicsModAction*> projection_actions;
 | |
|   if (g_ActiveConfig.bGraphicMods)
 | |
|   {
 | |
|     for (const auto& action : g_graphics_mod_manager->GetProjectionActions(xfmem.projection.type))
 | |
|     {
 | |
|       projection_actions.push_back(action);
 | |
|     }
 | |
| 
 | |
|     for (const auto& texture : textures)
 | |
|     {
 | |
|       for (const auto& action :
 | |
|            g_graphics_mod_manager->GetProjectionTextureActions(xfmem.projection.type, texture))
 | |
|       {
 | |
|         projection_actions.push_back(action);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (xf_state_manager.DidProjectionChange() || g_freelook_camera.GetController()->IsDirty() ||
 | |
|       !projection_actions.empty() || m_projection_graphics_mod_change)
 | |
|   {
 | |
|     xf_state_manager.ResetProjection();
 | |
|     m_projection_graphics_mod_change = !projection_actions.empty();
 | |
| 
 | |
|     auto corrected_matrix = LoadProjectionMatrix();
 | |
| 
 | |
|     GraphicsModActionData::Projection projection{&corrected_matrix};
 | |
|     for (const auto& action : projection_actions)
 | |
|     {
 | |
|       action->OnProjection(&projection);
 | |
|     }
 | |
| 
 | |
|     memcpy(constants.projection.data(), corrected_matrix.data.data(), 4 * sizeof(float4));
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (xf_state_manager.DidTexMatrixInfoChange())
 | |
|   {
 | |
|     xf_state_manager.ResetTexMatrixInfoChange();
 | |
|     constants.xfmem_dualTexInfo = xfmem.dualTexTrans.enabled;
 | |
|     for (size_t i = 0; i < std::size(xfmem.texMtxInfo); i++)
 | |
|       constants.xfmem_pack1[i][0] = xfmem.texMtxInfo[i].hex;
 | |
|     for (size_t i = 0; i < std::size(xfmem.postMtxInfo); i++)
 | |
|       constants.xfmem_pack1[i][1] = xfmem.postMtxInfo[i].hex;
 | |
| 
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (xf_state_manager.DidLightingConfigChange())
 | |
|   {
 | |
|     xf_state_manager.ResetLightingConfigChange();
 | |
| 
 | |
|     for (size_t i = 0; i < 2; i++)
 | |
|     {
 | |
|       constants.xfmem_pack1[i][2] = xfmem.color[i].hex;
 | |
|       constants.xfmem_pack1[i][3] = xfmem.alpha[i].hex;
 | |
|     }
 | |
|     constants.xfmem_numColorChans = xfmem.numChan.numColorChans;
 | |
|     dirty = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::TransformToClipSpace(const float* data, float* out, u32 MtxIdx)
 | |
| {
 | |
|   const float* world_matrix = &xfmem.posMatrices[(MtxIdx & 0x3f) * 4];
 | |
| 
 | |
|   // We use the projection matrix calculated by VertexShaderManager, because it
 | |
|   // includes any free look transformations.
 | |
|   // Make sure VertexShaderManager::SetConstants() has been called first.
 | |
|   const float* proj_matrix = &m_projection_matrix[0];
 | |
| 
 | |
|   const float t[3] = {data[0] * world_matrix[0] + data[1] * world_matrix[1] +
 | |
|                           data[2] * world_matrix[2] + world_matrix[3],
 | |
|                       data[0] * world_matrix[4] + data[1] * world_matrix[5] +
 | |
|                           data[2] * world_matrix[6] + world_matrix[7],
 | |
|                       data[0] * world_matrix[8] + data[1] * world_matrix[9] +
 | |
|                           data[2] * world_matrix[10] + world_matrix[11]};
 | |
| 
 | |
|   out[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3];
 | |
|   out[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7];
 | |
|   out[2] = t[0] * proj_matrix[8] + t[1] * proj_matrix[9] + t[2] * proj_matrix[10] + proj_matrix[11];
 | |
|   out[3] =
 | |
|       t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15];
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::DoState(PointerWrap& p)
 | |
| {
 | |
|   p.DoArray(m_projection_matrix);
 | |
|   g_freelook_camera.DoState(p);
 | |
| 
 | |
|   p.Do(constants);
 | |
| 
 | |
|   if (p.IsReadMode())
 | |
|   {
 | |
|     dirty = true;
 | |
|   }
 | |
| }
 |