LibWeb: Parse mimetype when creating Blob and File

This commit is contained in:
stelar7 2024-10-04 00:35:39 +02:00 committed by Andreas Kling
parent 0739f1b1e6
commit 193c0dcafc
Notes: github-actions[bot] 2024-10-04 18:57:01 +00:00
2 changed files with 19 additions and 19 deletions

View file

@ -17,6 +17,7 @@
#include <LibWeb/HTML/Scripting/TemporaryExecutionContext.h>
#include <LibWeb/HTML/StructuredSerialize.h>
#include <LibWeb/Infra/Strings.h>
#include <LibWeb/MimeSniff/MimeType.h>
#include <LibWeb/Streams/AbstractOperations.h>
#include <LibWeb/Streams/ReadableStreamDefaultReader.h>
#include <LibWeb/WebIDL/AbstractOperations.h>
@ -197,17 +198,17 @@ JS::NonnullGCPtr<Blob> Blob::create(JS::Realm& realm, Optional<Vector<BlobPart>>
auto type = String {};
// 3. If the type member of the options argument is not the empty string, run the following sub-steps:
if (options.has_value() && !options->type.is_empty()) {
// 1. If the type member is provided and is not the empty string, let t be set to the type dictionary member.
// FIXME: 1. If the type member is provided and is not the empty string, let t be set to the type dictionary member.
// If t contains any characters outside the range U+0020 to U+007E, then set t to the empty string and return from these substeps.
// NOTE: t is set to empty string at declaration.
if (!options->type.is_empty()) {
if (is_basic_latin(options->type))
type = options->type;
}
// FIXME: 2. Convert every character in t to ASCII lowercase.
// 2. Convert every character in t to ASCII lowercase.
if (!type.is_empty())
type = MUST(Infra::to_ascii_lowercase(type));
// NOTE: The spec is out of date, and we are supposed to call into the MimeType parser here.
if (!options->type.is_empty()) {
auto maybe_parsed_type = MUST(Web::MimeSniff::MimeType::parse(options->type));
if (maybe_parsed_type.has_value())
type = MUST(maybe_parsed_type->serialized());
}
}
// 4. Return a Blob object referring to bytes as its associated byte sequence, with its size set to the length of bytes, and its type set to the value of t from the substeps above.