LibGfx: Use gamma-corrected interpolation for color gradients

Switch over to gamma-aware interpolation. This causes color gradients
to not look so dark in the middle. SIMD optimized code is provided for
sse1 enabled builds.

Fixes #1342.
This commit is contained in:
Sahan Fernando 2020-11-17 02:35:41 +11:00 committed by Andreas Kling
parent 7042490e41
commit 1b9a85e4f1
Notes: sideshowbarker 2024-07-19 01:20:51 +09:00
3 changed files with 165 additions and 21 deletions

View file

@ -89,10 +89,10 @@ public:
static constexpr Color from_rgb(unsigned rgb) { return Color(rgb | 0xff000000); }
static constexpr Color from_rgba(unsigned rgba) { return Color(rgba); }
u8 red() const { return (m_value >> 16) & 0xff; }
u8 green() const { return (m_value >> 8) & 0xff; }
u8 blue() const { return m_value & 0xff; }
u8 alpha() const { return (m_value >> 24) & 0xff; }
constexpr u8 red() const { return (m_value >> 16) & 0xff; }
constexpr u8 green() const { return (m_value >> 8) & 0xff; }
constexpr u8 blue() const { return m_value & 0xff; }
constexpr u8 alpha() const { return (m_value >> 24) & 0xff; }
void set_alpha(u8 value)
{

157
Libraries/LibGfx/Gamma.h Normal file
View file

@ -0,0 +1,157 @@
/*
* Copyright (c) 2020, the SerenityOS developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "Color.h"
#include <math.h>
#include <xmmintrin.h>
#define GAMMA 2.2
// Most computer graphics are stored in the sRGB color space, which stores something close to
// the square root of the display intensity of each color channel. This is problematic for most
// operations that we want to perform on colors, since they typically assume that color scales
// linearly (e.g. rgb(127, 0, 0) is half as bright as rgb(255, 0, 0)). This causes incorrect
// results that look more gray than they should, to fix this we have to convert colors to the linear
// color space before performing these operations, then convert back before displaying.
//
// Conversion between linear and sRGB spaces are somewhat expensive to do on the CPU, so we instead
// interpret sRGB colors as gamma2.2 colors, which are close enough in most cases to be indistinguishable.
// Gamma 2.2 colors follow the simple rule of `display_intensity = pow(stored_intensity, 2.2)`.
// This module implements some fast color space transforms between the gamma2.2 and linear color spaces, plus
// some common primitive operations like blending.
//
// For a more in-depth overview of how gamma-adjustment works, check out:
// https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
namespace Gfx {
#ifndef NO_FPU
# ifdef __SSE__
// A vector of 4 floats, aligned for SSE instructions
typedef float v4sf __attribute__((vector_size(16)));
// Transform v4sf from gamma2.2 space to linear space
// Assumes x is in range [0, 1]
constexpr v4sf gamma_to_linear4(v4sf x)
{
return (0.8f + 0.2f * x) * x * x;
}
constexpr v4sf linear_to_gamma4(v4sf x)
{
// Source for approximation: https://mimosa-pudica.net/fast-gamma/
constexpr float a = 0.00279491f;
constexpr float b = 1.15907984f;
constexpr float c = (b / sqrt(1 + a)) - 1;
return ((b * __builtin_ia32_rsqrtps(x + a)) - c) * x;
}
// Linearize v1 and v2, lerp them by mix factor, then convert back.
// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
constexpr v4sf gamma_accurate_lerp4(v4sf v1, v4sf v2, float mix)
{
return linear_to_gamma4(gamma_to_linear4(v1) * (1 - mix) + gamma_to_linear4(v2) * mix);
}
// Convert a and b to linear space, blend them by mix factor, then convert back using sse1.
// The output is entirely a when mix = 0 and entirely b when mix = 1
constexpr Color gamma_accurate_blend4(Color a, Color b, float mix)
{
v4sf ac = {
(float)a.red(),
(float)a.green(),
(float)a.blue(),
0.f,
};
v4sf bc = {
(float)b.red(),
(float)b.green(),
(float)b.blue(),
0.f,
};
v4sf out = 255.f * gamma_accurate_lerp4(ac / 255.f, bc / 255.f, mix);
return Color(out[0], out[1], out[2]);
}
# endif
// Transform scalar from gamma2.2 space to linear space
// Assumes x is in range [0, 1]
constexpr float gamma_to_linear(float x)
{
# ifdef ACCURATE_GAMMA_ADJUSTMENT
// Slower, but more accurate
return pow(x, GAMMA);
# else
return (0.8 + 0.2 * x) * x * x;
# endif
}
// Transform scalar from linear space to gamma2.2 space
// Assumes x is in range [0, 1]
constexpr float linear_to_gamma(float x)
{
# ifdef ACCURATE_GAMMA_ADJUSTMENT
// Slower, but more accurate
return pow(x, 1. / GAMMA);
# else
// Source for approximation: https://mimosa-pudica.net/fast-gamma/
constexpr float a = 0.00279491;
constexpr float b = 1.15907984;
constexpr float c = (b / sqrt(1 + a)) - 1;
return ((b / __builtin_sqrt(x + a)) - c) * x;
# endif
}
// Linearize v1 and v2, lerp them by mix factor, then convert back.
// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
constexpr float gamma_accurate_lerp(float v1, float v2, float mix)
{
return linear_to_gamma(gamma_to_linear(v1) * (1 - mix) + gamma_to_linear(v2) * mix);
}
// Convert a and b to linear space, blend them by mix factor, then convert back.
// The output is entirely a when mix = 0 and entirely b when mix = 1
constexpr Color gamma_accurate_blend(Color a, Color b, float mix)
{
# ifdef __SSE__
return gamma_accurate_blend4(a, b, mix);
# else
return {
static_cast<u8>(255. * gamma_accurate_lerp(a.red() / 255., b.red() / 255., mix)),
static_cast<u8>(255. * gamma_accurate_lerp(a.green() / 255., b.green() / 255., mix)),
static_cast<u8>(255. * gamma_accurate_lerp(a.blue() / 255., b.blue() / 255., mix)),
};
# endif
}
#endif
}

View file

@ -28,6 +28,7 @@
#include "Bitmap.h"
#include "Emoji.h"
#include "Font.h"
#include "Gamma.h"
#include <AK/Assertions.h>
#include <AK/Function.h>
#include <AK/Memory.h>
@ -200,24 +201,13 @@ void Painter::fill_rect_with_gradient(Orientation orientation, const IntRect& a_
RGBA32* dst = m_target->scanline(clipped_rect.top()) + clipped_rect.left();
const size_t dst_skip = m_target->pitch() / sizeof(RGBA32);
float increment = (1.0 / ((rect.primary_size_for_orientation(orientation)) / 255.0));
int r2 = gradient_start.red();
int g2 = gradient_start.green();
int b2 = gradient_start.blue();
int r1 = gradient_end.red();
int g1 = gradient_end.green();
int b1 = gradient_end.blue();
float increment = (1.0 / ((rect.primary_size_for_orientation(orientation))));
if (orientation == Orientation::Horizontal) {
for (int i = clipped_rect.height() - 1; i >= 0; --i) {
float c = offset * increment;
for (int j = 0; j < clipped_rect.width(); ++j) {
dst[j] = Color(
r1 / 255.0 * c + r2 / 255.0 * (255 - c),
g1 / 255.0 * c + g2 / 255.0 * (255 - c),
b1 / 255.0 * c + b2 / 255.0 * (255 - c))
.value();
dst[j] = gamma_accurate_blend(gradient_start, gradient_end, c).value();
c += increment;
}
dst += dst_skip;
@ -225,10 +215,7 @@ void Painter::fill_rect_with_gradient(Orientation orientation, const IntRect& a_
} else {
float c = offset * increment;
for (int i = clipped_rect.height() - 1; i >= 0; --i) {
Color color(
r1 / 255.0 * c + r2 / 255.0 * (255 - c),
g1 / 255.0 * c + g2 / 255.0 * (255 - c),
b1 / 255.0 * c + b2 / 255.0 * (255 - c));
auto color = gamma_accurate_blend(gradient_start, gradient_end, c);
for (int j = 0; j < clipped_rect.width(); ++j) {
dst[j] = color.value();
}