LibCrypto: Remove unused CRC32, CRC16 and CRC8 classes

This commit is contained in:
devgianlu 2025-03-01 17:54:54 +01:00 committed by Jelle Raaijmakers
parent 0561d130f3
commit 6b2515657c
Notes: github-actions[bot] 2025-03-19 12:48:25 +00:00
6 changed files with 0 additions and 384 deletions

View file

@ -18,7 +18,6 @@ set(SOURCES
BigInt/UnsignedBigInteger.cpp
Certificate/Certificate.cpp
Checksum/cksum.cpp
Checksum/CRC32.cpp
Cipher/AES.cpp
Curves/EdwardsCurve.cpp
Curves/SECPxxxr1.cpp

View file

@ -1,82 +0,0 @@
/*
* Copyright (c) 2023, kleines Filmröllchen <filmroellchen@serenityos.org>.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Endian.h>
#include <AK/Format.h>
#include <AK/Types.h>
#include <LibCrypto/Checksum/ChecksumFunction.h>
namespace Crypto::Checksum {
// A generic 16-bit Cyclic Redundancy Check.
// Just like CRC32, this class receives its polynomial little-endian.
// For example, the polynomial x¹⁶ + x¹² + x⁵ + 1 is represented as 0x8408.
template<u16 polynomial>
class CRC16 : public ChecksumFunction<u16> {
public:
static constexpr u16 be_polynomial = bitswap(polynomial);
// This is a big endian table, while CRC-32 uses a little endian table.
static constexpr auto generate_table()
{
Array<u16, 256> data {};
data[0] = 0;
u16 value = 0x8000;
auto i = 1u;
do {
if ((value & 0x8000) != 0) {
value = be_polynomial ^ (value << 1);
} else {
value = value << 1;
}
for (auto j = 0u; j < i; ++j) {
data[i + j] = value ^ data[j];
}
i <<= 1;
} while (i < 256);
return data;
}
static constexpr auto table = generate_table();
virtual ~CRC16() = default;
CRC16() = default;
CRC16(ReadonlyBytes data)
{
update(data);
}
CRC16(u16 initial_state, ReadonlyBytes data)
: m_state(initial_state)
{
update(data);
}
// FIXME: This implementation is naive and slow.
// Figure out how to adopt the slicing-by-8 algorithm (see CRC32) for 16-bit polynomials.
virtual void update(ReadonlyBytes data) override
{
for (size_t i = 0; i < data.size(); i++) {
size_t table_index = ((m_state >> 8) ^ data.at(i)) & 0xFF;
m_state = (table[table_index] ^ (static_cast<u32>(m_state) << 8)) & 0xFFFF;
}
}
virtual u16 digest() override
{
return m_state;
}
private:
u16 m_state { 0 };
};
}

View file

@ -1,176 +0,0 @@
/*
* Copyright (c) 2020-2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Array.h>
#include <AK/Span.h>
#include <AK/Types.h>
#include <LibCrypto/Checksum/CRC32.h>
#ifdef __ARM_ACLE
# include <arm_acle.h>
#endif
namespace Crypto::Checksum {
#if __ARM_ARCH >= 8 && defined(__ARM_FEATURE_CRC32) && defined(__ARM_ACLE)
void CRC32::update(ReadonlyBytes span)
{
// FIXME: Does this require runtime checking on rpi?
// (Maybe the instruction is present on the rpi4 but not on the rpi3?)
u8 const* data = span.data();
size_t size = span.size();
while (size > 0 && (reinterpret_cast<FlatPtr>(data) & 7) != 0) {
m_state = __crc32b(m_state, *data);
++data;
--size;
}
auto* data64 = reinterpret_cast<u64 const*>(data);
while (size >= 8) {
m_state = __crc32d(m_state, *data64);
++data64;
size -= 8;
}
data = reinterpret_cast<u8 const*>(data64);
while (size > 0) {
m_state = __crc32b(m_state, *data);
++data;
--size;
}
}
// FIXME: On Intel, use _mm_crc32_u8 / _mm_crc32_u64 if available (SSE 4.2).
#else
static constexpr size_t ethernet_polynomial = 0xEDB88320;
# if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
// This implements Intel's slicing-by-8 algorithm. Their original paper is no longer on their website,
// but their source code is still available for reference:
// https://sourceforge.net/projects/slicing-by-8/
static constexpr auto generate_table()
{
Array<Array<u32, 256>, 8> data {};
for (u32 i = 0; i < 256; ++i) {
auto value = i;
for (size_t j = 0; j < 8; ++j)
value = (value >> 1) ^ ((value & 1) * ethernet_polynomial);
data[0][i] = value;
}
for (u32 i = 0; i < 256; ++i) {
for (size_t j = 1; j < 8; ++j)
data[j][i] = (data[j - 1][i] >> 8) ^ data[0][data[j - 1][i] & 0xff];
}
return data;
}
static constexpr auto table = generate_table();
struct AlignmentData {
ReadonlyBytes misaligned;
ReadonlyBytes aligned;
};
static AlignmentData split_bytes_for_alignment(ReadonlyBytes data, size_t alignment)
{
auto address = reinterpret_cast<uintptr_t>(data.data());
auto offset = alignment - address % alignment;
if (offset == alignment)
return { {}, data };
if (data.size() < alignment)
return { data, {} };
return { data.trim(offset), data.slice(offset) };
}
static constexpr u32 single_byte_crc(u32 crc, u8 byte)
{
return (crc >> 8) ^ table[0][(crc & 0xff) ^ byte];
}
void CRC32::update(ReadonlyBytes data)
{
// The provided data may not be aligned to a 4-byte boundary, required to reinterpret its address
// into a u32 in the loop below. So we split the bytes into two segments: the misaligned bytes
// (which undergo the standard 1-byte-at-a-time algorithm) and remaining aligned bytes.
auto [misaligned_data, aligned_data] = split_bytes_for_alignment(data, alignof(u32));
for (auto byte : misaligned_data)
m_state = single_byte_crc(m_state, byte);
while (aligned_data.size() >= 8) {
auto const* segment = reinterpret_cast<u32 const*>(aligned_data.data());
auto low = *segment ^ m_state;
auto high = *(++segment);
m_state = table[0][(high >> 24) & 0xff]
^ table[1][(high >> 16) & 0xff]
^ table[2][(high >> 8) & 0xff]
^ table[3][high & 0xff]
^ table[4][(low >> 24) & 0xff]
^ table[5][(low >> 16) & 0xff]
^ table[6][(low >> 8) & 0xff]
^ table[7][low & 0xff];
aligned_data = aligned_data.slice(8);
}
for (auto byte : aligned_data)
m_state = single_byte_crc(m_state, byte);
}
# else
// FIXME: Implement the slicing-by-8 algorithm for big endian CPUs.
static constexpr auto generate_table()
{
Array<u32, 256> data {};
for (auto i = 0u; i < data.size(); i++) {
u32 value = i;
for (auto j = 0; j < 8; j++) {
if (value & 1) {
value = ethernet_polynomial ^ (value >> 1);
} else {
value = value >> 1;
}
}
data[i] = value;
}
return data;
}
static constexpr auto table = generate_table();
void CRC32::update(ReadonlyBytes data)
{
for (size_t i = 0; i < data.size(); i++) {
m_state = table[(m_state ^ data.at(i)) & 0xFF] ^ (m_state >> 8);
}
}
# endif
#endif
u32 CRC32::digest()
{
return ~m_state;
}
}

View file

@ -1,36 +0,0 @@
/*
* Copyright (c) 2020-2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Span.h>
#include <AK/Types.h>
#include <LibCrypto/Checksum/ChecksumFunction.h>
namespace Crypto::Checksum {
class CRC32 : public ChecksumFunction<u32> {
public:
CRC32() = default;
CRC32(ReadonlyBytes data)
{
update(data);
}
CRC32(u32 initial_state, ReadonlyBytes data)
: m_state(initial_state)
{
update(data);
}
virtual void update(ReadonlyBytes data) override;
virtual u32 digest() override;
private:
u32 m_state { ~0u };
};
}

View file

@ -1,76 +0,0 @@
/*
* Copyright (c) 2023, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Types.h>
#include <LibCrypto/Checksum/ChecksumFunction.h>
namespace Crypto::Checksum {
// A generic 8-bit Cyclic Redundancy Check.
// Note that as opposed to CRC32, this class operates with MSB first, so the polynomial must not be reversed.
// For example, the polynomial x⁸ + x² + x + 1 is represented as 0x07 and not 0xE0.
template<u8 polynomial>
class CRC8 : public ChecksumFunction<u8> {
public:
// This is a big endian table, while CRC-32 uses a little endian table.
static constexpr auto generate_table()
{
Array<u8, 256> data {};
u8 value = 0x80;
auto i = 1u;
do {
if ((value & 0x80) != 0) {
value = polynomial ^ (value << 1);
} else {
value = value << 1;
}
for (auto j = 0u; j < i; ++j) {
data[i + j] = value ^ data[j];
}
i <<= 1;
} while (i < 256);
return data;
}
static constexpr auto table = generate_table();
virtual ~CRC8() = default;
CRC8() = default;
CRC8(ReadonlyBytes data)
{
update(data);
}
CRC8(u8 initial_state, ReadonlyBytes data)
: m_state(initial_state)
{
update(data);
}
// FIXME: This implementation is naive and slow.
// Figure out how to adopt the slicing-by-8 algorithm (see CRC32) for 8 bit polynomials.
virtual void update(ReadonlyBytes data) override
{
for (size_t i = 0; i < data.size(); i++) {
size_t table_index = (m_state ^ data.at(i)) & 0xFF;
m_state = (table[table_index] ^ (static_cast<u32>(m_state) << 8)) & 0xFF;
}
}
virtual u8 digest() override
{
return m_state;
}
private:
u8 m_state { 0 };
};
}

View file

@ -4,7 +4,6 @@
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibCrypto/Checksum/CRC32.h>
#include <LibCrypto/Checksum/cksum.h>
#include <LibTest/TestCase.h>
@ -36,15 +35,3 @@ TEST_CASE(test_cksum_atomic_digest)
compare(digest, 0x2D65C7E0);
}
TEST_CASE(test_crc32)
{
auto do_test = [](ReadonlyBytes input, u32 expected_result) {
auto digest = Crypto::Checksum::CRC32(input).digest();
EXPECT_EQ(digest, expected_result);
};
do_test(""sv.bytes(), 0x0);
do_test("The quick brown fox jumps over the lazy dog"sv.bytes(), 0x414FA339);
do_test("various CRC algorithms input data"sv.bytes(), 0x9BD366AE);
}