Replace zones with individually tracked physical pages.

It's just a simple struct { ref_count, paddr }.
This will allow me to implement lazy zeroing and COW pages.
This commit is contained in:
Andreas Kling 2018-11-05 10:23:00 +01:00
parent b5c5286ee1
commit 72cdc62155
Notes: sideshowbarker 2024-07-19 18:33:43 +09:00
10 changed files with 161 additions and 127 deletions

View file

@ -45,12 +45,12 @@ void MemoryManager::release_page_directory(PageDirectory& page_directory)
dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
#endif
for (size_t i = 0; i < 1024; ++i) {
auto page_table = page_directory.physical_addresses[i];
auto& page_table = page_directory.physical_pages[i];
if (!page_table.is_null()) {
#ifdef MM_DEBUG
dbgprintf("MM: deallocating process page table [%u] P%x @ %p\n", i, page_table.get(), &process.m_page_directory->physical_addresses[i]);
dbgprintf("MM: deallocating user page table P%x\n", page_table->paddr().get());
#endif
deallocate_page_table(page_table);
deallocate_page_table(page_directory, i);
}
}
#ifdef SCRUB_DEALLOCATED_PAGE_TABLES
@ -76,9 +76,9 @@ void MemoryManager::initializePaging()
// The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
// The physical pages 4 MB through 8 MB are available for Zone allocation.
// The physical pages 4 MB through 8 MB are available for allocation.
for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
m_freePages.append(PhysicalAddress(i));
m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));
asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
asm volatile(
@ -88,20 +88,29 @@ void MemoryManager::initializePaging()
);
}
PhysicalAddress MemoryManager::allocate_page_table()
RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
{
auto ppages = allocatePhysicalPages(1);
dword address = ppages[0].get();
auto& page_directory_physical_ptr = page_directory.physical_pages[index];
ASSERT(!page_directory_physical_ptr);
auto ppages = allocate_physical_pages(1);
ASSERT(ppages.size() == 1);
dword address = ppages[0]->paddr().get();
create_identity_mapping(LinearAddress(address), PAGE_SIZE);
memset((void*)address, 0, PAGE_SIZE);
return PhysicalAddress(address);
page_directory.physical_pages[index] = move(ppages[0]);
return page_directory.physical_pages[index];
}
void MemoryManager::deallocate_page_table(PhysicalAddress paddr)
void MemoryManager::deallocate_page_table(PageDirectory& page_directory, unsigned index)
{
ASSERT(!m_freePages.contains_slow(paddr));
remove_identity_mapping(LinearAddress(paddr.get()), PAGE_SIZE);
m_freePages.append(paddr);
auto& physical_page = page_directory.physical_pages[index];
ASSERT(physical_page);
ASSERT(!m_free_physical_pages.contains_slow(physical_page));
for (size_t i = 0; i < MM.m_free_physical_pages.size(); ++i) {
ASSERT(MM.m_free_physical_pages[i].ptr() != physical_page.ptr());
}
remove_identity_mapping(LinearAddress(physical_page->paddr().get()), PAGE_SIZE);
page_directory.physical_pages[index] = nullptr;
}
void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
@ -143,20 +152,21 @@ auto MemoryManager::ensurePTE(PageDirectory* page_directory, LinearAddress laddr
pde.setPresent(true);
pde.setWritable(true);
} else {
auto page_table = allocate_page_table();
auto page_table = allocate_page_table(*page_directory, page_directory_index);
#ifdef MM_DEBUG
dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
page_directory,
page_directory == m_kernel_page_directory ? "Kernel" : "User",
page_directory_index,
laddr.get(),
page_table);
page_table->paddr().get());
#endif
page_directory->physical_addresses[page_directory_index] = page_table;
pde.setPageTableBase(page_table.get());
pde.setPageTableBase(page_table->paddr().get());
pde.setUserAllowed(true);
pde.setPresent(true);
pde.setWritable(true);
page_directory->physical_pages[page_directory_index] = move(page_table);
}
}
return PageTableEntry(&pde.pageTableBase()[page_table_index]);
@ -209,61 +219,18 @@ PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
return PageFaultResponse::ShouldCrash;
}
void MemoryManager::registerZone(Zone& zone)
{
ASSERT_INTERRUPTS_DISABLED();
m_zones.set(&zone);
#ifdef MM_DEBUG
for (size_t i = 0; i < zone.m_pages.size(); ++i)
dbgprintf("MM: allocated to zone: P%x\n", zone.m_pages[i].get());
#endif
}
void MemoryManager::unregisterZone(Zone& zone)
{
ASSERT_INTERRUPTS_DISABLED();
#ifdef MM_DEBUG
for (size_t i = 0; i < zone.m_pages.size(); ++i)
dbgprintf("MM: deallocated from zone: P%x\n", zone.m_pages[i].get());
#endif
m_zones.remove(&zone);
m_freePages.append(move(zone.m_pages));
}
Zone::Zone(Vector<PhysicalAddress>&& pages)
: m_pages(move(pages))
{
MM.registerZone(*this);
}
Zone::~Zone()
{
MM.unregisterZone(*this);
}
RetainPtr<Zone> MemoryManager::createZone(size_t size)
Vector<RetainPtr<PhysicalPage>> MemoryManager::allocate_physical_pages(size_t count)
{
InterruptDisabler disabler;
auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE));
if (pages.isEmpty()) {
kprintf("MM: createZone: no physical pages for size %u\n", size);
return nullptr;
}
return adopt(*new Zone(move(pages)));
}
Vector<PhysicalAddress> MemoryManager::allocatePhysicalPages(size_t count)
{
InterruptDisabler disabler;
if (count > m_freePages.size())
if (count > m_free_physical_pages.size())
return { };
Vector<PhysicalAddress> pages;
Vector<RetainPtr<PhysicalPage>> pages;
pages.ensureCapacity(count);
for (size_t i = 0; i < count; ++i) {
pages.append(m_freePages.takeLast());
pages.append(m_free_physical_pages.takeLast());
#ifdef MM_DEBUG
dbgprintf("MM: allocate_physical_pages vending P%x\n", pages.last());
dbgprintf("MM: allocate_physical_pages vending P%x\n", pages.last()->paddr().get());
#endif
}
return pages;
@ -299,17 +266,22 @@ void MemoryManager::flushTLB(LinearAddress laddr)
void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
{
InterruptDisabler disabler;
auto& zone = *region.zone;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
for (size_t i = 0; i < region.physical_pages.size(); ++i) {
auto page_laddr = laddr.offset(i * PAGE_SIZE);
auto pte = ensurePTE(page_directory, page_laddr);
pte.setPhysicalPageBase(zone.m_pages[i].get());
pte.setPresent(true); // FIXME: Maybe we could use the is_readable flag here?
auto& physical_page = region.physical_pages[i];
if (physical_page) {
pte.setPhysicalPageBase(physical_page->paddr().get());
pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
} else {
pte.setPhysicalPageBase(0);
pte.setPresent(false);
}
pte.setWritable(region.is_writable);
pte.setUserAllowed(user_allowed);
flushTLB(page_laddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> map_region_at_address (PD=%x) L%x => P%x\n", page_directory, page_laddr, zone.m_pages[i].get());
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
#endif
}
}
@ -369,8 +341,7 @@ void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
bool MemoryManager::unmapRegion(Process& process, Region& region)
{
InterruptDisabler disabler;
auto& zone = *region.zone;
for (size_t i = 0; i < zone.m_pages.size(); ++i) {
for (size_t i = 0; i < region.physical_pages.size(); ++i) {
auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
auto pte = ensurePTE(process.m_page_directory, laddr);
pte.setPhysicalPageBase(0);
@ -379,7 +350,8 @@ bool MemoryManager::unmapRegion(Process& process, Region& region)
pte.setUserAllowed(false);
flushTLB(laddr);
#ifdef MM_DEBUG
//dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
auto& physical_page = region.physical_pages[i];
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
#endif
}
return true;
@ -429,12 +401,12 @@ RetainPtr<Region> Region::clone()
KernelPagingScope pagingScope;
if (is_readable && !is_writable) {
// Create a new region backed by the same zone.
return adopt(*new Region(linearAddress, size, zone.copyRef(), String(name), is_readable, is_writable));
// Create a new region backed by the same physical pages.
return adopt(*new Region(linearAddress, size, physical_pages, String(name), is_readable, is_writable));
}
// FIXME: Implement COW regions.
auto clone_zone = MM.createZone(zone->size());
auto clone_region = adopt(*new Region(linearAddress, size, move(clone_zone), String(name), is_readable, is_writable));
auto clone_physical_pages = MM.allocate_physical_pages(physical_pages.size());
auto clone_region = adopt(*new Region(linearAddress, size, move(clone_physical_pages), String(name), is_readable, is_writable));
// FIXME: It would be cool to make the src_alias a read-only mapping.
byte* src_alias = MM.create_kernel_alias_for_region(*this);
@ -447,3 +419,26 @@ RetainPtr<Region> Region::clone()
return clone_region;
}
Region::Region(LinearAddress a, size_t s, Vector<RetainPtr<PhysicalPage>> pp, String&& n, bool r, bool w)
: linearAddress(a)
, size(s)
, physical_pages(move(pp))
, name(move(n))
, is_readable(r)
, is_writable(w)
{
}
Region::~Region()
{
}
void PhysicalPage::return_to_freelist()
{
InterruptDisabler disabler;
m_retain_count = 1;
MM.m_free_physical_pages.append(adopt(*this));
#ifdef MM_DEBUG
dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
#endif
}