LibGfx: Simplify path storage and tidy up APIs

Rather than make path segments virtual and refcounted let's store
`Gfx::Path`s as a list of `FloatPoints` and a separate list of commands.

This reduces the size of paths, for example, a `MoveTo` goes from 24
bytes to 9 bytes (one point + a single byte command), and removes a
layer of indirection when accessing segments. A nice little bonus is
transforming a path can now be done by applying the transform to all
points in the path (without looking at the commands).

Alongside this there's been a few minor API changes:

- `path.segments()` has been removed
  * All current uses could be replaced by a new `path.is_empty()` API
  * There's also now an iterator for looping over `Gfx::Path` segments
- `path.add_path(other_path)` has been removed
  * This was a duplicate of `path.append_path(other_path)`
- `path.ensure_subpath(point)` has been removed
  * Had one use and is equivalent to an `is_empty()` check + `move_to()`
- `path.close()` and `path.close_all_subpaths()` assume an implicit
  `moveto 0,0` if there's no `moveto` at the start of a path (for
  consistency with `path.segmentize_path()`).

Only the last point could change behaviour (though in LibWeb/SVGs all
paths start with a `moveto` as per the spec, it's only possible to
construct a path without a starting `moveto` via LibGfx APIs).
This commit is contained in:
MacDue 2024-03-17 20:23:17 +00:00 committed by Andreas Kling
commit 8057542dea
Notes: sideshowbarker 2024-07-17 10:54:57 +09:00
9 changed files with 237 additions and 273 deletions

View file

@ -144,7 +144,7 @@ void EdgeFlagPathRasterizer<SamplesPerPixel>::fill_internal(Painter& painter, Pa
if (m_clip.is_empty()) if (m_clip.is_empty())
return; return;
auto& lines = path.split_lines(); auto lines = path.split_lines();
if (lines.is_empty()) if (lines.is_empty())
return; return;

View file

@ -6,6 +6,7 @@
#pragma once #pragma once
#include <AK/HashMap.h>
#include <AK/Noncopyable.h> #include <AK/Noncopyable.h>
#include <AK/RefCounted.h> #include <AK/RefCounted.h>
#include <LibGfx/Font/Font.h> #include <LibGfx/Font/Font.h>

View file

@ -279,10 +279,10 @@ public:
path.line_to(TRY(read_point())); path.line_to(TRY(read_point()));
break; break;
case PathCommand::HorizontalLine: case PathCommand::HorizontalLine:
path.line_to({ TRY(read_unit()), path.segments().last()->point().y() }); path.line_to({ TRY(read_unit()), path.last_point().y() });
break; break;
case PathCommand::VerticalLine: case PathCommand::VerticalLine:
path.line_to({ path.segments().last()->point().x(), TRY(read_unit()) }); path.line_to({ path.last_point().x(), TRY(read_unit()) });
break; break;
case PathCommand::CubicBezier: { case PathCommand::CubicBezier: {
auto control_0 = TRY(read_point()); auto control_0 = TRY(read_point());

View file

@ -4,10 +4,7 @@
* SPDX-License-Identifier: BSD-2-Clause * SPDX-License-Identifier: BSD-2-Clause
*/ */
#include <AK/Function.h>
#include <AK/HashTable.h>
#include <AK/Math.h> #include <AK/Math.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h> #include <AK/StringBuilder.h>
#include <AK/TypeCasts.h> #include <AK/TypeCasts.h>
#include <LibGfx/BoundingBox.h> #include <LibGfx/BoundingBox.h>
@ -80,7 +77,7 @@ void Path::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rot
// Step 1 of out-of-range radii correction // Step 1 of out-of-range radii correction
if (rx == 0.0 || ry == 0.0) { if (rx == 0.0 || ry == 0.0) {
append_segment<LineSegment>(next_point); append_segment<PathSegment::LineTo>(next_point);
return; return;
} }
@ -192,7 +189,7 @@ Path Path::place_text_along(Utf8View text, Font const& font) const
return {}; return {};
} }
auto& lines = split_lines(); auto lines = split_lines();
auto next_point_for_offset = [&, line_index = 0U, distance_along_path = 0.0f, last_line_length = 0.0f](float offset) mutable -> Optional<FloatPoint> { auto next_point_for_offset = [&, line_index = 0U, distance_along_path = 0.0f, last_line_length = 0.0f](float offset) mutable -> Optional<FloatPoint> {
while (line_index < lines.size() && offset > distance_along_path) { while (line_index < lines.size() && offset > distance_along_path) {
last_line_length = lines[line_index++].length(); last_line_length = lines[line_index++].length();
@ -247,118 +244,79 @@ Path Path::place_text_along(Utf8View text, Font const& font) const
return result_path; return result_path;
} }
FloatPoint Path::last_point()
{
FloatPoint last_point { 0, 0 };
if (!m_segments.is_empty())
last_point = m_segments.last()->point();
return last_point;
}
void Path::close() void Path::close()
{ {
if (m_segments.size() <= 1) // If there's no `moveto` starting this subpath assume the start is (0, 0).
return; FloatPoint first_point_in_subpath = { 0, 0 };
for (auto it = end(); it-- != begin();) {
auto last_point = m_segments.last()->point(); auto segment = *it;
if (segment.command() == PathSegment::MoveTo) {
for (ssize_t i = m_segments.size() - 1; i >= 0; --i) { first_point_in_subpath = segment.point();
auto& segment = m_segments[i]; break;
if (segment->type() == Segment::Type::MoveTo) {
if (last_point == segment->point())
return;
append_segment<LineSegment>(segment->point());
invalidate_split_lines();
return;
} }
} }
if (first_point_in_subpath != last_point())
line_to(first_point_in_subpath);
} }
void Path::close_all_subpaths() void Path::close_all_subpaths()
{ {
if (m_segments.size() <= 1) auto it = begin();
return; // Note: Get the end outside the loop as closing subpaths will move the end.
auto end = this->end();
invalidate_split_lines(); while (it < end) {
// If there's no `moveto` starting this subpath assume the start is (0, 0).
Optional<FloatPoint> cursor, start_of_subpath; FloatPoint first_point_in_subpath = { 0, 0 };
bool is_first_point_in_subpath { false }; auto segment = *it;
if (segment.command() == PathSegment::MoveTo) {
auto close_previous_subpath = [&] { first_point_in_subpath = segment.point();
if (cursor.has_value() && !is_first_point_in_subpath) { ++it;
// This is a move from a subpath to another
// connect the two ends of this subpath before
// moving on to the next one
VERIFY(start_of_subpath.has_value());
append_segment<MoveSegment>(cursor.value());
append_segment<LineSegment>(start_of_subpath.value());
} }
}; // Find the end of the current subpath.
FloatPoint cursor = first_point_in_subpath;
auto segment_count = m_segments.size(); while (it < end) {
for (size_t i = 0; i < segment_count; i++) { auto segment = *it;
// Note: We need to use m_segments[i] as append_segment() may invalidate any references. if (segment.command() == PathSegment::MoveTo)
switch (m_segments[i]->type()) { break;
case Segment::Type::MoveTo: { cursor = segment.point();
close_previous_subpath(); ++it;
is_first_point_in_subpath = true;
cursor = m_segments[i]->point();
break;
} }
case Segment::Type::LineTo: // Close the subpath.
case Segment::Type::QuadraticBezierCurveTo: if (first_point_in_subpath != cursor) {
case Segment::Type::CubicBezierCurveTo: move_to(cursor);
if (is_first_point_in_subpath) { line_to(first_point_in_subpath);
start_of_subpath = cursor;
is_first_point_in_subpath = false;
}
cursor = m_segments[i]->point();
break;
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
break;
} }
} }
if (m_segments.last()->type() != Segment::Type::MoveTo)
close_previous_subpath();
} }
ByteString Path::to_byte_string() const ByteString Path::to_byte_string() const
{ {
StringBuilder builder; StringBuilder builder;
builder.append("Path { "sv); builder.append("Path { "sv);
for (auto& segment : m_segments) { for (auto segment : *this) {
switch (segment->type()) { switch (segment.command()) {
case Segment::Type::MoveTo: case PathSegment::MoveTo:
builder.append("MoveTo"sv); builder.append("MoveTo"sv);
break; break;
case Segment::Type::LineTo: case PathSegment::LineTo:
builder.append("LineTo"sv); builder.append("LineTo"sv);
break; break;
case Segment::Type::QuadraticBezierCurveTo: case PathSegment::QuadraticBezierCurveTo:
builder.append("QuadraticBezierCurveTo"sv); builder.append("QuadraticBezierCurveTo"sv);
break; break;
case Segment::Type::CubicBezierCurveTo: case PathSegment::CubicBezierCurveTo:
builder.append("CubicBezierCurveTo"sv); builder.append("CubicBezierCurveTo"sv);
break; break;
case Segment::Type::Invalid:
builder.append("Invalid"sv);
break;
} }
builder.appendff("({}", segment->point()); builder.appendff("({}", segment.point());
switch (segment->type()) { switch (segment.command()) {
case Segment::Type::QuadraticBezierCurveTo: case PathSegment::QuadraticBezierCurveTo:
builder.append(", "sv); builder.appendff(", {}"sv, segment.through());
builder.append(static_cast<QuadraticBezierCurveSegment const&>(*segment).through().to_byte_string());
break; break;
case Segment::Type::CubicBezierCurveTo: case PathSegment::CubicBezierCurveTo:
builder.append(", "sv); builder.appendff(", {}"sv, segment.through_0());
builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_0().to_byte_string()); builder.appendff(", {}"sv, segment.through_1());
builder.append(", "sv);
builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_1().to_byte_string());
break; break;
default: default:
break; break;
@ -381,88 +339,44 @@ void Path::segmentize_path()
}; };
FloatPoint cursor { 0, 0 }; FloatPoint cursor { 0, 0 };
for (auto& segment : m_segments) { for (auto segment : *this) {
switch (segment->type()) { switch (segment.command()) {
case Segment::Type::MoveTo: case PathSegment::MoveTo:
bounding_box.add_point(segment->point()); bounding_box.add_point(segment.point());
cursor = segment->point();
break; break;
case Segment::Type::LineTo: { case PathSegment::LineTo: {
add_line(cursor, segment->point()); add_line(cursor, segment.point());
cursor = segment->point();
break; break;
} }
case Segment::Type::QuadraticBezierCurveTo: { case PathSegment::QuadraticBezierCurveTo: {
auto control = static_cast<QuadraticBezierCurveSegment const&>(*segment).through(); Painter::for_each_line_segment_on_bezier_curve(segment.through(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1); add_line(p0, p1);
}); });
cursor = segment->point();
break; break;
} }
case Segment::Type::CubicBezierCurveTo: { case PathSegment::CubicBezierCurveTo: {
auto& curve = static_cast<CubicBezierCurveSegment const&>(*segment); Painter::for_each_line_segment_on_cubic_bezier_curve(segment.through_0(), segment.through_1(), cursor, segment.point(), [&](FloatPoint p0, FloatPoint p1) {
auto control_0 = curve.through_0();
auto control_1 = curve.through_1();
Painter::for_each_line_segment_on_cubic_bezier_curve(control_0, control_1, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1); add_line(p0, p1);
}); });
cursor = segment->point();
break; break;
} }
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
} }
cursor = segment.point();
} }
m_split_lines = move(segments); m_split_lines = SplitLines { move(segments), bounding_box };
m_bounding_box = bounding_box;
} }
Path Path::copy_transformed(Gfx::AffineTransform const& transform) const Path Path::copy_transformed(Gfx::AffineTransform const& transform) const
{ {
Path result; Path result;
result.m_commands = m_commands;
for (auto const& segment : m_segments) { result.m_points.ensure_capacity(m_points.size());
switch (segment->type()) { for (auto point : m_points)
case Segment::Type::MoveTo: result.m_points.unchecked_append(transform.map(point));
result.move_to(transform.map(segment->point()));
break;
case Segment::Type::LineTo: {
result.line_to(transform.map(segment->point()));
break;
}
case Segment::Type::QuadraticBezierCurveTo: {
auto const& quadratic_segment = static_cast<QuadraticBezierCurveSegment const&>(*segment);
result.quadratic_bezier_curve_to(transform.map(quadratic_segment.through()), transform.map(segment->point()));
break;
}
case Segment::Type::CubicBezierCurveTo: {
auto const& cubic_segment = static_cast<CubicBezierCurveSegment const&>(*segment);
result.cubic_bezier_curve_to(transform.map(cubic_segment.through_0()), transform.map(cubic_segment.through_1()), transform.map(segment->point()));
break;
}
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
}
}
return result; return result;
} }
void Path::add_path(Path const& other)
{
m_segments.extend(other.m_segments);
invalidate_split_lines();
}
void Path::ensure_subpath(FloatPoint point)
{
if (m_need_new_subpath && m_segments.is_empty()) {
move_to(point);
m_need_new_subpath = false;
}
}
template<typename T> template<typename T>
struct RoundTrip { struct RoundTrip {
RoundTrip(ReadonlySpan<T> span) RoundTrip(ReadonlySpan<T> span)
@ -498,7 +412,7 @@ Path Path::stroke_to_fill(float thickness) const
VERIFY(thickness > 0); VERIFY(thickness > 0);
auto& lines = split_lines(); auto lines = split_lines();
if (lines.is_empty()) if (lines.is_empty())
return Path {}; return Path {};

View file

@ -7,10 +7,8 @@
#pragma once #pragma once
#include <AK/ByteString.h> #include <AK/ByteString.h>
#include <AK/HashMap.h>
#include <AK/Optional.h> #include <AK/Optional.h>
#include <AK/Vector.h> #include <AK/Vector.h>
#include <LibGfx/Font/Font.h>
#include <LibGfx/Forward.h> #include <LibGfx/Forward.h>
#include <LibGfx/Line.h> #include <LibGfx/Line.h>
#include <LibGfx/Point.h> #include <LibGfx/Point.h>
@ -18,91 +16,127 @@
namespace Gfx { namespace Gfx {
class Segment : public RefCounted<Segment> { class Path;
class PathSegment {
public: public:
enum class Type { enum Command : u8 {
Invalid,
MoveTo, MoveTo,
LineTo, LineTo,
QuadraticBezierCurveTo, QuadraticBezierCurveTo,
CubicBezierCurveTo, CubicBezierCurveTo,
}; };
Segment(FloatPoint point) ALWAYS_INLINE Command command() const { return m_command; }
: m_point(point) ALWAYS_INLINE FloatPoint point() const { return m_points.last(); }
ALWAYS_INLINE FloatPoint through() const
{ {
VERIFY(m_command == Command::QuadraticBezierCurveTo);
return m_points[0];
}
ALWAYS_INLINE FloatPoint through_0() const
{
VERIFY(m_command == Command::CubicBezierCurveTo);
return m_points[0];
}
ALWAYS_INLINE FloatPoint through_1() const
{
VERIFY(m_command == Command::CubicBezierCurveTo);
return m_points[1];
} }
virtual ~Segment() = default; static constexpr int points_per_command(Command command)
FloatPoint point() const { return m_point; }
virtual Type type() const = 0;
protected:
FloatPoint m_point;
};
class MoveSegment final : public Segment {
public:
MoveSegment(FloatPoint point)
: Segment(point)
{ {
switch (command) {
case Command::MoveTo:
case Command::LineTo:
return 1; // Single point.
case Command::QuadraticBezierCurveTo:
return 2; // Control point + point.
case Command::CubicBezierCurveTo:
return 3; // Two control points + point.
}
VERIFY_NOT_REACHED();
} }
PathSegment(Command command, ReadonlySpan<FloatPoint> points)
: m_command(command)
, m_points(points) {};
private: private:
virtual Type type() const override { return Segment::Type::MoveTo; } Command m_command;
ReadonlySpan<FloatPoint> m_points;
}; };
class LineSegment final : public Segment { class PathSegmentIterator {
public: public:
LineSegment(FloatPoint point) int operator<=>(PathSegmentIterator other) const
: Segment(point) {
if (m_command_index > other.m_command_index)
return 1;
if (m_command_index < other.m_command_index)
return -1;
return 0;
}
bool operator==(PathSegmentIterator other) const { return m_command_index == other.m_command_index; }
bool operator!=(PathSegmentIterator other) const { return m_command_index != other.m_command_index; }
PathSegmentIterator operator++()
{
if (m_command_index < m_commands.size())
m_point_index += PathSegment::points_per_command(m_commands[m_command_index++]);
return *this;
}
PathSegmentIterator operator++(int)
{
PathSegmentIterator old(*this);
++*this;
return old;
}
PathSegmentIterator operator--()
{
if (m_command_index > 0)
m_point_index -= PathSegment::points_per_command(m_commands[--m_command_index]);
return *this;
}
PathSegmentIterator operator--(int)
{
PathSegmentIterator old(*this);
--*this;
return old;
}
PathSegment operator*() const
{
auto command = m_commands[m_command_index];
return PathSegment { command, m_points.span().slice(m_point_index, PathSegment::points_per_command(command)) };
}
PathSegmentIterator& operator=(PathSegmentIterator const& other)
{
m_point_index = other.m_point_index;
m_command_index = other.m_command_index;
return *this;
}
PathSegmentIterator(PathSegmentIterator const&) = default;
friend Path;
private:
PathSegmentIterator(Vector<FloatPoint> const& points, Vector<PathSegment::Command> const& commands, size_t point_index = 0, size_t command_index = 0)
: m_points(points)
, m_commands(commands)
, m_point_index(point_index)
, m_command_index(command_index)
{ {
} }
virtual ~LineSegment() override = default; // Note: Store reference to vectors from Gfx::Path so appending segments does not invalidate iterators.
Vector<FloatPoint> const& m_points;
private: Vector<PathSegment::Command> const& m_commands;
virtual Type type() const override { return Segment::Type::LineTo; } size_t m_point_index { 0 };
}; size_t m_command_index { 0 };
class QuadraticBezierCurveSegment final : public Segment {
public:
QuadraticBezierCurveSegment(FloatPoint point, FloatPoint through)
: Segment(point)
, m_through(through)
{
}
virtual ~QuadraticBezierCurveSegment() override = default;
FloatPoint through() const { return m_through; }
private:
virtual Type type() const override { return Segment::Type::QuadraticBezierCurveTo; }
FloatPoint m_through;
};
class CubicBezierCurveSegment final : public Segment {
public:
CubicBezierCurveSegment(FloatPoint point, FloatPoint through_0, FloatPoint through_1)
: Segment(point)
, m_through_0(through_0)
, m_through_1(through_1)
{
}
virtual ~CubicBezierCurveSegment() override = default;
FloatPoint through_0() const { return m_through_0; }
FloatPoint through_1() const { return m_through_1; }
private:
virtual Type type() const override { return Segment::Type::CubicBezierCurveTo; }
FloatPoint m_through_0;
FloatPoint m_through_1;
}; };
class Path { class Path {
@ -111,40 +145,34 @@ public:
void move_to(FloatPoint point) void move_to(FloatPoint point)
{ {
append_segment<MoveSegment>(point); append_segment<PathSegment::MoveTo>(point);
} }
void line_to(FloatPoint point) void line_to(FloatPoint point)
{ {
append_segment<LineSegment>(point); append_segment<PathSegment::LineTo>(point);
invalidate_split_lines(); invalidate_split_lines();
} }
void horizontal_line_to(float x) void horizontal_line_to(float x)
{ {
float previous_y = 0; line_to({ x, last_point().y() });
if (!m_segments.is_empty())
previous_y = m_segments.last()->point().y();
line_to({ x, previous_y });
} }
void vertical_line_to(float y) void vertical_line_to(float y)
{ {
float previous_x = 0; line_to({ last_point().x(), y });
if (!m_segments.is_empty())
previous_x = m_segments.last()->point().x();
line_to({ previous_x, y });
} }
void quadratic_bezier_curve_to(FloatPoint through, FloatPoint point) void quadratic_bezier_curve_to(FloatPoint through, FloatPoint point)
{ {
append_segment<QuadraticBezierCurveSegment>(point, through); append_segment<PathSegment::QuadraticBezierCurveTo>(point, through);
invalidate_split_lines(); invalidate_split_lines();
} }
void cubic_bezier_curve_to(FloatPoint c1, FloatPoint c2, FloatPoint p2) void cubic_bezier_curve_to(FloatPoint c1, FloatPoint c2, FloatPoint p2)
{ {
append_segment<CubicBezierCurveSegment>(p2, c1, c2); append_segment<PathSegment::CubicBezierCurveTo>(p2, c1, c2);
invalidate_split_lines(); invalidate_split_lines();
} }
@ -156,75 +184,95 @@ public:
void text(Utf8View, Font const&); void text(Utf8View, Font const&);
FloatPoint last_point(); FloatPoint last_point()
{
if (!m_points.is_empty())
return m_points.last();
return {};
}
void close(); void close();
void close_all_subpaths(); void close_all_subpaths();
Vector<NonnullRefPtr<Segment const>> const& segments() const { return m_segments; } Path stroke_to_fill(float thickness) const;
auto& split_lines() const Path place_text_along(Utf8View text, Font const&) const;
Path copy_transformed(AffineTransform const&) const;
ReadonlySpan<FloatLine> split_lines() const
{ {
if (!m_split_lines.has_value()) { if (!m_split_lines.has_value()) {
const_cast<Path*>(this)->segmentize_path(); const_cast<Path*>(this)->segmentize_path();
VERIFY(m_split_lines.has_value()); VERIFY(m_split_lines.has_value());
} }
return m_split_lines.value(); return m_split_lines->lines;
}
void clear()
{
m_segments.clear();
m_split_lines.clear();
} }
Gfx::FloatRect const& bounding_box() const Gfx::FloatRect const& bounding_box() const
{ {
if (!m_bounding_box.has_value()) { (void)split_lines();
const_cast<Path*>(this)->segmentize_path(); return m_split_lines->bounding_box;
VERIFY(m_bounding_box.has_value());
}
return m_bounding_box.value();
} }
void append_path(Path const& path) void append_path(Path const& path)
{ {
m_segments.ensure_capacity(m_segments.size() + path.m_segments.size()); m_commands.extend(path.m_commands);
for (auto const& segment : path.m_segments) m_points.extend(path.m_points);
m_segments.unchecked_append(segment);
invalidate_split_lines(); invalidate_split_lines();
} }
Path copy_transformed(AffineTransform const&) const;
void add_path(Path const&);
void ensure_subpath(FloatPoint point);
ByteString to_byte_string() const; ByteString to_byte_string() const;
Path stroke_to_fill(float thickness) const; PathSegmentIterator begin() const
{
return PathSegmentIterator(m_points, m_commands);
}
Path place_text_along(Utf8View text, Font const&) const; PathSegmentIterator end() const
{
return PathSegmentIterator(m_points, m_commands, m_points.size(), m_commands.size());
}
bool is_empty() const
{
return m_commands.is_empty();
}
void clear()
{
*this = Path {};
}
private: private:
void approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta); void approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta);
void invalidate_split_lines() void invalidate_split_lines()
{ {
m_bounding_box.clear();
m_split_lines.clear(); m_split_lines.clear();
} }
void segmentize_path(); void segmentize_path();
template<typename T, typename... Args> template<PathSegment::Command command, typename... Args>
void append_segment(Args&&... args) void append_segment(FloatPoint point, Args&&... args)
{ {
m_segments.append(adopt_ref(*new T(forward<Args>(args)...))); constexpr auto point_count = sizeof...(Args) + 1;
static_assert(point_count == PathSegment::points_per_command(command));
m_commands.append(command);
// Place the current path point after any extra control points so `m_points.last()` is always the last point.
FloatPoint points[] { args..., point };
m_points.append(points, point_count);
} }
Vector<NonnullRefPtr<Segment const>> m_segments {}; Vector<FloatPoint> m_points {};
Vector<PathSegment::Command> m_commands {};
Optional<Vector<FloatLine>> m_split_lines {}; struct SplitLines {
Optional<Gfx::FloatRect> m_bounding_box; Vector<FloatLine> lines;
bool m_need_new_subpath = { true }; Gfx::FloatRect bounding_box;
};
Optional<SplitLines> m_split_lines {};
}; };
} }

View file

@ -247,7 +247,7 @@ RENDERER_HANDLER(path_move)
RENDERER_HANDLER(path_line) RENDERER_HANDLER(path_line)
{ {
VERIFY(!m_current_path.segments().is_empty()); VERIFY(!m_current_path.is_empty());
m_current_path.line_to(map(args[0].to_float(), args[1].to_float())); m_current_path.line_to(map(args[0].to_float(), args[1].to_float()));
return {}; return {};
} }
@ -265,8 +265,8 @@ RENDERER_HANDLER(path_cubic_bezier_curve)
RENDERER_HANDLER(path_cubic_bezier_curve_no_first_control) RENDERER_HANDLER(path_cubic_bezier_curve_no_first_control)
{ {
VERIFY(args.size() == 4); VERIFY(args.size() == 4);
VERIFY(!m_current_path.segments().is_empty()); VERIFY(!m_current_path.is_empty());
auto current_point = (*m_current_path.segments().rbegin())->point(); auto current_point = m_current_path.last_point();
m_current_path.cubic_bezier_curve_to( m_current_path.cubic_bezier_curve_to(
current_point, current_point,
map(args[0].to_float(), args[1].to_float()), map(args[0].to_float(), args[1].to_float()),
@ -277,7 +277,7 @@ RENDERER_HANDLER(path_cubic_bezier_curve_no_first_control)
RENDERER_HANDLER(path_cubic_bezier_curve_no_second_control) RENDERER_HANDLER(path_cubic_bezier_curve_no_second_control)
{ {
VERIFY(args.size() == 4); VERIFY(args.size() == 4);
VERIFY(!m_current_path.segments().is_empty()); VERIFY(!m_current_path.is_empty());
auto first_control_point = map(args[0].to_float(), args[1].to_float()); auto first_control_point = map(args[0].to_float(), args[1].to_float());
auto second_control_point = map(args[2].to_float(), args[3].to_float()); auto second_control_point = map(args[2].to_float(), args[3].to_float());
m_current_path.cubic_bezier_curve_to( m_current_path.cubic_bezier_curve_to(

View file

@ -129,7 +129,8 @@ WebIDL::ExceptionOr<void> CanvasPath::arc_to(double x1, double y1, double x2, do
// 2. Ensure there is a subpath for (x1, y1). // 2. Ensure there is a subpath for (x1, y1).
auto transform = active_transform(); auto transform = active_transform();
m_path.ensure_subpath(transform.map(Gfx::FloatPoint { x1, y1 })); if (m_path.is_empty())
m_path.move_to(transform.map(Gfx::FloatPoint { x1, y1 }));
// 3. If radius is negative, then throw an "IndexSizeError" DOMException. // 3. If radius is negative, then throw an "IndexSizeError" DOMException.
if (radius < 0) if (radius < 0)

View file

@ -42,9 +42,9 @@ Path2D::Path2D(JS::Realm& realm, Optional<Variant<JS::Handle<Path2D>, String>> c
auto path_instructions = SVG::AttributeParser::parse_path_data(path->get<String>()); auto path_instructions = SVG::AttributeParser::parse_path_data(path->get<String>());
auto svg_path = SVG::path_from_path_instructions(path_instructions); auto svg_path = SVG::path_from_path_instructions(path_instructions);
if (!svg_path.segments().is_empty()) { if (!svg_path.is_empty()) {
// 5. Let (x, y) be the last point in svgPath. // 5. Let (x, y) be the last point in svgPath.
auto xy = svg_path.segments().last()->point(); auto xy = svg_path.last_point();
// 6. Add all the subpaths, if any, from svgPath to output. // 6. Add all the subpaths, if any, from svgPath to output.
this->path() = move(svg_path); this->path() = move(svg_path);
@ -70,7 +70,7 @@ WebIDL::ExceptionOr<void> Path2D::add_path(JS::NonnullGCPtr<Path2D> path, Geomet
// The addPath(path, transform) method, when invoked on a Path2D object a, must run these steps: // The addPath(path, transform) method, when invoked on a Path2D object a, must run these steps:
// 1. If the Path2D object path has no subpaths, then return. // 1. If the Path2D object path has no subpaths, then return.
if (path->path().segments().is_empty()) if (path->path().is_empty())
return {}; return {};
// 2. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform. // 2. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform.
@ -85,11 +85,11 @@ WebIDL::ExceptionOr<void> Path2D::add_path(JS::NonnullGCPtr<Path2D> path, Geomet
auto copy = path->path().copy_transformed(Gfx::AffineTransform { static_cast<float>(matrix->m11()), static_cast<float>(matrix->m12()), static_cast<float>(matrix->m21()), static_cast<float>(matrix->m22()), static_cast<float>(matrix->m41()), static_cast<float>(matrix->m42()) }); auto copy = path->path().copy_transformed(Gfx::AffineTransform { static_cast<float>(matrix->m11()), static_cast<float>(matrix->m12()), static_cast<float>(matrix->m21()), static_cast<float>(matrix->m22()), static_cast<float>(matrix->m41()), static_cast<float>(matrix->m42()) });
// 6. Let (x, y) be the last point in the last subpath of c. // 6. Let (x, y) be the last point in the last subpath of c.
auto xy = copy.segments().last()->point(); auto xy = copy.last_point();
// 7. Add all the subpaths in c to a. // 7. Add all the subpaths in c to a.
// FIXME: Is this correct? // FIXME: Is this correct?
this->path().add_path(copy); this->path().append_path(copy);
// 8. Create a new subpath in a with (x, y) as the only point in the subpath. // 8. Create a new subpath in a with (x, y) as the only point in the subpath.
this->move_to(xy.x(), xy.y()); this->move_to(xy.x(), xy.y());

View file

@ -111,7 +111,7 @@ Gfx::Path path_from_path_instructions(ReadonlySpan<PathInstruction> instructions
for (auto& instruction : instructions) { for (auto& instruction : instructions) {
// If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0). // If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0).
auto last_point = path.segments().is_empty() ? Gfx::FloatPoint { 0, 0 } : path.segments().last()->point(); auto last_point = path.last_point();
auto& absolute = instruction.absolute; auto& absolute = instruction.absolute;
auto& data = instruction.data; auto& data = instruction.data;