mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-07-30 04:39:06 +00:00
LibJS: Implement Math.sumPrecise
This commit is contained in:
parent
c769271e82
commit
80b2c11c81
Notes:
github-actions[bot]
2025-03-03 20:47:18 +00:00
Author: https://github.com/aplefull
Commit: 80b2c11c81
Pull-request: https://github.com/LadybirdBrowser/ladybird/pull/3776
5 changed files with 341 additions and 0 deletions
|
@ -10,7 +10,9 @@
|
|||
#include <AK/BuiltinWrappers.h>
|
||||
#include <AK/Function.h>
|
||||
#include <AK/Random.h>
|
||||
#include <LibJS/Runtime/AbstractOperations.h>
|
||||
#include <LibJS/Runtime/GlobalObject.h>
|
||||
#include <LibJS/Runtime/Iterator.h>
|
||||
#include <LibJS/Runtime/MathObject.h>
|
||||
#include <LibJS/Runtime/ValueInlines.h>
|
||||
#include <math.h>
|
||||
|
@ -65,6 +67,7 @@ void MathObject::initialize(Realm& realm)
|
|||
define_native_function(realm, vm.names.sinh, sinh, 1, attr);
|
||||
define_native_function(realm, vm.names.cosh, cosh, 1, attr);
|
||||
define_native_function(realm, vm.names.tanh, tanh, 1, attr);
|
||||
define_native_function(realm, vm.names.sumPrecise, sumPrecise, 1, attr);
|
||||
|
||||
// 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
|
||||
define_direct_property(vm.names.E, Value(M_E), 0);
|
||||
|
@ -957,4 +960,241 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
|
|||
: ::floor(number.as_double()));
|
||||
}
|
||||
|
||||
struct TwoSumResult {
|
||||
double hi;
|
||||
double lo;
|
||||
};
|
||||
|
||||
static TwoSumResult two_sum(double x, double y)
|
||||
{
|
||||
double hi = x + y;
|
||||
double lo = y - (hi - x);
|
||||
return { hi, lo };
|
||||
}
|
||||
|
||||
// https://tc39.es/proposal-math-sum/#sec-math.sumprecise
|
||||
ThrowCompletionOr<Value> MathObject::sum_precise_impl(VM& vm, Value iterable)
|
||||
{
|
||||
constexpr double MAX_DOUBLE = 1.79769313486231570815e+308; // std::numeric_limits<double>::max()
|
||||
constexpr double PENULTIMATE_DOUBLE = 1.79769313486231550856e+308; // std::nextafter(DBL_MAX, 0)
|
||||
constexpr double MAX_ULP = MAX_DOUBLE - PENULTIMATE_DOUBLE;
|
||||
constexpr double POW_2_1023 = 8.98846567431158e+307; // 2^1023
|
||||
|
||||
// 1. Perform ? RequireObjectCoercible(items).
|
||||
TRY(require_object_coercible(vm, iterable));
|
||||
|
||||
// 2. Let iteratorRecord be ? GetIterator(items, sync).
|
||||
auto using_iterator = TRY(iterable.get_method(vm, vm.well_known_symbol_iterator()));
|
||||
if (!using_iterator)
|
||||
return vm.throw_completion<TypeError>(ErrorType::NotIterable, iterable.to_string_without_side_effects());
|
||||
|
||||
auto iterator = TRY(get_iterator_from_method(vm, iterable, *using_iterator));
|
||||
|
||||
enum State {
|
||||
MinusZero,
|
||||
PlusInfinity,
|
||||
MinusInfinity,
|
||||
NotANumber,
|
||||
Finite
|
||||
};
|
||||
|
||||
// 3. Let state be minus-zero.
|
||||
State state = State::MinusZero;
|
||||
|
||||
// 4. Let sum be 0.
|
||||
// 5. Let count be 0.
|
||||
double overflow = 0.0;
|
||||
u64 count = 0;
|
||||
Vector<double> partials;
|
||||
|
||||
// 6. Let next be not-started.
|
||||
// 7. Repeat, while next is not done
|
||||
for (;;) {
|
||||
// a. Set next to ? IteratorStepValue(iteratorRecord).
|
||||
auto next = TRY(iterator_step_value(vm, iterator));
|
||||
|
||||
if (!next.has_value())
|
||||
break;
|
||||
|
||||
// If next is not done, then
|
||||
// i. Set count to count + 1.
|
||||
count++;
|
||||
// ii. If count ≥ 2**53, then
|
||||
// 1. Let error be ThrowCompletion(a newly created RangeError object).
|
||||
// 2. Return ? IteratorClose(iteratorRecord, error).
|
||||
if (count >= (1ULL << 53))
|
||||
return iterator_close(vm, iterator, vm.throw_completion<RangeError>(ErrorType::ArrayMaxSize));
|
||||
|
||||
// iii. NOTE: The above case is not expected to be reached in practice and is included only so that implementations may rely on inputs being
|
||||
// "reasonably sized" without violating this specification.
|
||||
|
||||
// iv. If next is not a Number, then
|
||||
auto value = next.value();
|
||||
if (!value.is_number())
|
||||
// 1. Let error be ThrowCompletion(a newly created TypeError object).
|
||||
// 2. Return ? IteratorClose(iteratorRecord, error).
|
||||
return iterator_close(vm, iterator, vm.throw_completion<TypeError>(ErrorType::IsNotA, value.to_string_without_side_effects(), "number"));
|
||||
|
||||
// v. Let n be next.
|
||||
auto n = value.as_double();
|
||||
|
||||
// vi. If state is not not-a-number, then
|
||||
if (state != State::NotANumber) {
|
||||
// 1. If n is NaN, then
|
||||
if (isnan(n)) {
|
||||
// a. Set state to not-a-number.
|
||||
state = State::NotANumber;
|
||||
} // 2. Else if n is +∞𝔽, then
|
||||
else if (Value(n).is_positive_infinity()) {
|
||||
// a. If state is minus-infinity, set state to not-a-number.
|
||||
// b. Else, set state to plus-infinity.
|
||||
state = (state == State::MinusInfinity) ? State::NotANumber : State::PlusInfinity;
|
||||
} // 3. Else if n is -∞𝔽, then
|
||||
else if (Value(n).is_negative_infinity()) {
|
||||
// a. If state is plus-infinity, set state to not-a-number.
|
||||
// b. Else, set state to minus-infinity.
|
||||
state = (state == State::PlusInfinity) ? State::NotANumber : State::MinusInfinity;
|
||||
} // 4. Else if n is not -0𝔽 and state is either minus-zero or finite, then
|
||||
else if (!Value(n).is_negative_zero() && (state == State::MinusZero || state == State::Finite)) {
|
||||
// a. Set state to finite.
|
||||
state = State::Finite;
|
||||
|
||||
// b. Set sum to sum + ℝ(n).
|
||||
double x = n;
|
||||
size_t used_partials = 0;
|
||||
|
||||
for (size_t i = 0; i < partials.size(); i++) {
|
||||
double y = partials[i];
|
||||
|
||||
if (AK::abs(x) < AK::abs(y))
|
||||
swap(x, y);
|
||||
|
||||
TwoSumResult result = two_sum(x, y);
|
||||
double hi = result.hi;
|
||||
double lo = result.lo;
|
||||
|
||||
if (isinf(hi)) {
|
||||
double sign = signbit(hi) ? -1.0 : 1.0;
|
||||
overflow += sign;
|
||||
|
||||
if (AK::abs(overflow) >= (1ULL << 53))
|
||||
return vm.throw_completion<RangeError>(ErrorType::MathSumPreciseOverflow);
|
||||
|
||||
x = (x - sign * POW_2_1023) - sign * POW_2_1023;
|
||||
|
||||
if (AK::abs(x) < AK::abs(y))
|
||||
swap(x, y);
|
||||
|
||||
result = two_sum(x, y);
|
||||
hi = result.hi;
|
||||
lo = result.lo;
|
||||
}
|
||||
|
||||
if (lo != 0.0) {
|
||||
partials[used_partials++] = lo;
|
||||
}
|
||||
|
||||
x = hi;
|
||||
}
|
||||
|
||||
partials.resize(used_partials);
|
||||
|
||||
if (x != 0.0) {
|
||||
partials.append(x);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 8. If state is not-a-number, return NaN.
|
||||
if (state == State::NotANumber)
|
||||
return js_nan();
|
||||
|
||||
// 9. If state is plus-infinity, return +∞𝔽.
|
||||
if (state == State::PlusInfinity)
|
||||
return js_infinity();
|
||||
|
||||
// 10. If state is minus-infinity, return -∞𝔽.
|
||||
if (state == State::MinusInfinity)
|
||||
return js_negative_infinity();
|
||||
|
||||
// 11. If state is minus-zero, return -0𝔽.
|
||||
if (state == State::MinusZero)
|
||||
return Value(-0.0);
|
||||
|
||||
// 12. Return 𝔽(sum).
|
||||
int n = partials.size() - 1;
|
||||
double hi = 0.0;
|
||||
double lo = 0.0;
|
||||
|
||||
if (overflow != 0.0) {
|
||||
double next = n >= 0 ? partials[n] : 0.0;
|
||||
n--;
|
||||
|
||||
if (AK::abs(overflow) > 1.0 || (overflow > 0.0 && next > 0.0) || (overflow < 0.0 && next < 0.0)) {
|
||||
return overflow > 0.0 ? js_infinity() : js_negative_infinity();
|
||||
}
|
||||
|
||||
TwoSumResult result = two_sum(overflow * POW_2_1023, next / 2.0);
|
||||
hi = result.hi;
|
||||
lo = result.lo * 2.0;
|
||||
|
||||
if (isinf(hi * 2.0)) {
|
||||
if (hi > 0.0) {
|
||||
if (hi == POW_2_1023 && lo == -(MAX_ULP / 2.0) && n >= 0 && partials[n] < 0.0) {
|
||||
return Value(MAX_DOUBLE);
|
||||
}
|
||||
|
||||
return js_infinity();
|
||||
} else {
|
||||
if (hi == -POW_2_1023 && lo == (MAX_ULP / 2.0) && n >= 0 && partials[n] > 0.0) {
|
||||
return Value(-MAX_DOUBLE);
|
||||
}
|
||||
|
||||
return js_negative_infinity();
|
||||
}
|
||||
}
|
||||
|
||||
if (lo != 0.0) {
|
||||
partials[n + 1] = lo;
|
||||
n++;
|
||||
lo = 0.0;
|
||||
}
|
||||
|
||||
hi *= 2.0;
|
||||
}
|
||||
|
||||
while (n >= 0) {
|
||||
double x = hi;
|
||||
double y = partials[n];
|
||||
n--;
|
||||
|
||||
TwoSumResult result = two_sum(x, y);
|
||||
hi = result.hi;
|
||||
lo = result.lo;
|
||||
|
||||
if (lo != 0.0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (n >= 0 && ((lo < 0.0 && partials[n] < 0.0) || (lo > 0.0 && partials[n] > 0.0))) {
|
||||
double y = lo * 2.0;
|
||||
double x = hi + y;
|
||||
double yr = x - hi;
|
||||
|
||||
if (y == yr) {
|
||||
hi = x;
|
||||
}
|
||||
}
|
||||
|
||||
return Value(hi);
|
||||
}
|
||||
|
||||
// https://tc39.es/proposal-math-sum/#sec-math.sumprecise
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::sumPrecise)
|
||||
{
|
||||
return sum_precise_impl(vm, vm.argument(0));
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue