LibSQL: Introduce Serializer as a mediator between Heap and client code

Classes reading and writing to the data heap would communicate directly
with the Heap object, and transfer ByteBuffers back and forth with it.
This makes things like caching and locking hard. Therefore all data
persistence activity will be funneled through a Serializer object which
in turn submits it to the Heap.

Introducing this unfortunately resulted in a huge amount of churn, in
which a number of smaller refactorings got caught up as well.
This commit is contained in:
Jan de Visser 2021-08-18 20:50:13 -04:00 committed by Andreas Kling
parent 9e43508d30
commit 85a84b0794
Notes: sideshowbarker 2024-07-18 05:26:05 +09:00
30 changed files with 995 additions and 780 deletions

View file

@ -9,7 +9,7 @@
#include <AK/NonnullOwnPtr.h>
#include <AK/StringBuilder.h>
#include <LibSQL/BTree.h>
#include <LibSQL/Serialize.h>
#include <LibSQL/Serializer.h>
namespace SQL {
@ -53,17 +53,25 @@ DownPointer::DownPointer(DownPointer const& other)
TreeNode* DownPointer::node()
{
if (!m_node)
inflate();
deserialize(m_owner->tree().serializer());
return m_node;
}
void DownPointer::inflate()
void DownPointer::deserialize(Serializer& serializer)
{
if (m_node || !m_pointer)
return;
auto buffer = m_owner->tree().read_block(m_pointer);
size_t offset = 0;
m_node = make<TreeNode>(m_owner->tree(), m_owner, m_pointer, buffer, offset);
serializer.get_block(m_pointer);
m_node = serializer.make_and_deserialize<TreeNode>(m_owner->tree(), m_owner, m_pointer);
}
TreeNode::TreeNode(BTree& tree, u32 pointer)
: IndexNode(pointer)
, m_tree(tree)
, m_up(nullptr)
, m_entries()
, m_down()
{
}
TreeNode::TreeNode(BTree& tree, TreeNode* up, u32 pointer)
@ -103,36 +111,55 @@ TreeNode::TreeNode(BTree& tree, TreeNode* up, TreeNode* left, u32 pointer)
m_is_leaf = left->pointer() == 0;
}
TreeNode::TreeNode(BTree& tree, TreeNode* up, u32 pointer, ByteBuffer& buffer, size_t& at_offset)
: IndexNode(pointer)
, m_tree(tree)
, m_up(up)
, m_entries()
, m_down()
void TreeNode::deserialize(Serializer& serializer)
{
u32 nodes;
deserialize_from<u32>(buffer, at_offset, nodes);
auto nodes = serializer.deserialize<u32>();
dbgln_if(SQL_DEBUG, "Deserializing node. Size {}", nodes);
if (nodes > 0) {
for (u32 i = 0; i < nodes; i++) {
u32 left;
deserialize_from<u32>(buffer, at_offset, left);
auto left = serializer.deserialize<u32>();
dbgln_if(SQL_DEBUG, "Down[{}] {}", i, left);
if (!m_down.is_empty())
VERIFY((left == 0) == m_is_leaf);
else
m_is_leaf = (left == 0);
m_entries.append(Key(m_tree.descriptor(), buffer, at_offset));
m_entries.append(serializer.deserialize<Key>(m_tree.descriptor()));
m_down.empend(this, left);
}
u32 right;
deserialize_from<u32>(buffer, at_offset, right);
auto right = serializer.deserialize<u32>();
dbgln_if(SQL_DEBUG, "Right {}", right);
VERIFY((right == 0) == m_is_leaf);
m_down.empend(this, right);
}
}
void TreeNode::serialize(Serializer& serializer) const
{
u32 sz = size();
serializer.serialize<u32>(sz);
if (sz > 0) {
for (auto ix = 0u; ix < size(); ix++) {
auto& entry = m_entries[ix];
dbgln_if(SQL_DEBUG, "Serializing Left[{}] = {}", ix, m_down[ix].pointer());
serializer.serialize<u32>(is_leaf() ? 0u : m_down[ix].pointer());
serializer.serialize<Key>(entry);
}
dbgln_if(SQL_DEBUG, "Serializing Right = {}", m_down[size()].pointer());
serializer.serialize<u32>(is_leaf() ? 0u : m_down[size()].pointer());
}
}
size_t TreeNode::length() const
{
if (!size())
return 0;
size_t len = sizeof(u32);
for (auto& key : m_entries) {
len += sizeof(u32) + key.length();
}
return len;
}
bool TreeNode::insert(Key const& key)
{
dbgln_if(SQL_DEBUG, "[#{}] INSERT({})", pointer(), key.to_string());
@ -154,7 +181,7 @@ bool TreeNode::update_key_pointer(Key const& key)
if (m_entries[ix].pointer() != key.pointer()) {
m_entries[ix].set_pointer(key.pointer());
dump_if(SQL_DEBUG, "To WAL");
tree().add_to_write_ahead_log(this);
tree().serializer().serialize_and_write<TreeNode>(*this, pointer());
}
return true;
}
@ -179,16 +206,6 @@ bool TreeNode::insert_in_leaf(Key const& key)
return true;
}
size_t TreeNode::max_keys_in_node()
{
auto descriptor = m_tree.descriptor();
auto key_size = descriptor->data_length() + sizeof(u32);
auto ret = (BLOCKSIZE - 2 * sizeof(u32)) / key_size;
if ((ret % 2) == 0)
--ret;
return ret;
}
Key const& TreeNode::operator[](size_t ix) const
{
VERIFY(ix < size());
@ -263,22 +280,6 @@ Optional<u32> TreeNode::get(Key& key)
return down_node(size())->get(key);
}
void TreeNode::serialize(ByteBuffer& buffer) const
{
u32 sz = size();
serialize_to<u32>(buffer, sz);
if (sz > 0) {
for (auto ix = 0u; ix < size(); ix++) {
auto& entry = m_entries[ix];
dbgln_if(SQL_DEBUG, "Serializing Left[{}] = {}", ix, m_down[ix].pointer());
serialize_to<u32>(buffer, is_leaf() ? 0u : m_down[ix].pointer());
entry.serialize(buffer);
}
dbgln_if(SQL_DEBUG, "Serializing Right = {}", m_down[size()].pointer());
serialize_to<u32>(buffer, is_leaf() ? 0u : m_down[size()].pointer());
}
}
void TreeNode::just_insert(Key const& key, TreeNode* right)
{
dbgln_if(SQL_DEBUG, "[#{}] just_insert({}, right = {})",
@ -289,11 +290,11 @@ void TreeNode::just_insert(Key const& key, TreeNode* right)
m_entries.insert(ix, key);
VERIFY(is_leaf() == (right == nullptr));
m_down.insert(ix + 1, DownPointer(this, right));
if (size() > max_keys_in_node()) {
if (length() > BLOCKSIZE) {
split();
} else {
dump_if(SQL_DEBUG, "To WAL");
tree().add_to_write_ahead_log(this);
tree().serializer().serialize_and_write(*this, pointer());
}
return;
}
@ -301,11 +302,11 @@ void TreeNode::just_insert(Key const& key, TreeNode* right)
m_entries.append(key);
m_down.empend(this, right);
if (size() > max_keys_in_node()) {
if (length() > BLOCKSIZE) {
split();
} else {
dump_if(SQL_DEBUG, "To WAL");
tree().add_to_write_ahead_log(this);
tree().serializer().serialize_and_write(*this, pointer());
}
}
@ -317,15 +318,18 @@ void TreeNode::split()
m_up = m_tree.new_root();
// Take the left pointer for the new node:
DownPointer left = m_down.take(max_keys_in_node() / 2 + 1);
auto median_index = size() / 2;
if (!(size() % 2))
++median_index;
DownPointer left = m_down.take(median_index);
// Create the new right node:
auto* new_node = new TreeNode(tree(), m_up, left);
// Move the rightmost keys from this node to the new right node:
while (m_entries.size() > max_keys_in_node() / 2 + 1) {
auto entry = m_entries.take(max_keys_in_node() / 2 + 1);
auto down = m_down.take(max_keys_in_node() / 2 + 1);
while (m_entries.size() > median_index) {
auto entry = m_entries.take(median_index);
auto down = m_down.take(median_index);
// Reparent to new right node:
if (down.m_node != nullptr) {
@ -340,9 +344,9 @@ void TreeNode::split()
auto median = m_entries.take_last();
dump_if(SQL_DEBUG, "Split Left To WAL");
tree().add_to_write_ahead_log(this);
tree().serializer().serialize_and_write(*this, pointer());
new_node->dump_if(SQL_DEBUG, "Split Right to WAL");
tree().add_to_write_ahead_log(new_node);
tree().serializer().serialize_and_write(*new_node, pointer());
m_up->just_insert(median, new_node);
}