mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-04-21 20:15:17 +00:00
LibM: Implement various trig functions
Patch from Anonymous.
This commit is contained in:
parent
3ebfa9f044
commit
941981ec4f
Notes:
sideshowbarker
2024-07-19 11:52:53 +09:00
Author: https://github.com/awesomekling Commit: https://github.com/SerenityOS/serenity/commit/941981ec4fd
3 changed files with 129 additions and 9 deletions
54
Libraries/LibM/TestMath.cpp
Normal file
54
Libraries/LibM/TestMath.cpp
Normal file
|
@ -0,0 +1,54 @@
|
|||
#include <AK/TestSuite.h>
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#define EXPECT_CLOSE(a, b) { EXPECT(fabs(a - b) < 0.000001); }
|
||||
|
||||
TEST_CASE(trig)
|
||||
{
|
||||
EXPECT_CLOSE(sin(1234), 0.653316);
|
||||
EXPECT_CLOSE(cos(1234), -0.830914);
|
||||
EXPECT_CLOSE(tan(1234), -0.786262);
|
||||
EXPECT_CLOSE(sqrt(1234), 35.128336)
|
||||
EXPECT_CLOSE(sin(-1), -0.867955);
|
||||
EXPECT_CLOSE(cos(-1), 0.594715);
|
||||
EXPECT_CLOSE(tan(-1), -1.459446);
|
||||
EXPECT(isnan(sqrt(-1)));
|
||||
}
|
||||
|
||||
TEST_CASE(other)
|
||||
{
|
||||
EXPECT_EQ(trunc(9999999999999.5), 9999999999999.0);
|
||||
EXPECT_EQ(trunc(-9999999999999.5), -9999999999999.0);
|
||||
}
|
||||
|
||||
TEST_CASE(exponents)
|
||||
{
|
||||
struct values {
|
||||
double x;
|
||||
double exp;
|
||||
double sinh;
|
||||
double cosh;
|
||||
double tanh;
|
||||
};
|
||||
|
||||
values values[8] {
|
||||
{ 1.500000, 4.481626, 2.129246, 2.352379, 0.905148},
|
||||
{ 20.990000, 1304956710.432035, 652478355.216017, 652478355.216017, 1.000000},
|
||||
{ 20.010000, 490041186.687082, 245020593.343541, 245020593.343541, 1.000000},
|
||||
{ 0.000000, 1.000000, 0.000000, 1.000000, 0.000000},
|
||||
{ 0.010000, 1.010050, 0.010000, 1.000050, 0.010000},
|
||||
{ -0.010000, 0.990050, -0.010000, 1.000050, -0.010000},
|
||||
{ -1.000000, 0.367879, -1.175201, 1.543081, -0.761594},
|
||||
{ -17.000000, 0.000000, -12077476.376788, 12077476.376788, -1.000000},
|
||||
};
|
||||
for (auto& v : values) {
|
||||
EXPECT_CLOSE(exp(v.x), v.exp);
|
||||
EXPECT_CLOSE(sinh(v.x), v.sinh);
|
||||
EXPECT_CLOSE(cosh(v.x), v.cosh);
|
||||
EXPECT_CLOSE(tanh(v.x), v.tanh);
|
||||
}
|
||||
EXPECT_EQ(exp(1000), std::numeric_limits<double>::infinity());
|
||||
}
|
||||
|
||||
TEST_MAIN(Math)
|
|
@ -1,10 +1,21 @@
|
|||
#include <LibC/assert.h>
|
||||
#include <LibM/math.h>
|
||||
#include <limits>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
template<size_t> constexpr double e_to_power();
|
||||
template<> constexpr double e_to_power<0>() { return 1; }
|
||||
template<size_t exponent> constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
||||
|
||||
template<size_t> constexpr size_t factorial();
|
||||
template<> constexpr size_t factorial<0>() { return 1; }
|
||||
template<size_t value> constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
||||
|
||||
extern "C" {
|
||||
double trunc(double x)
|
||||
{
|
||||
return (int)x;
|
||||
return (int64_t)x;
|
||||
}
|
||||
|
||||
double cos(double angle)
|
||||
|
@ -40,17 +51,25 @@ double pow(double x, double y)
|
|||
(void)x;
|
||||
(void)y;
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double ldexp(double, int exp)
|
||||
{
|
||||
(void)exp;
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double tanh(double)
|
||||
double tanh(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
if (x > 0) {
|
||||
double exponentiated = exp(2 * x);
|
||||
return (exponentiated - 1) / (exponentiated + 1);
|
||||
}
|
||||
double plusX = exp(x);
|
||||
double minusX = exp(-x);
|
||||
return (plusX - minusX) / (plusX + minusX);
|
||||
}
|
||||
|
||||
double tan(double angle)
|
||||
|
@ -65,19 +84,25 @@ double sqrt(double x)
|
|||
return res;
|
||||
}
|
||||
|
||||
double sinh(double)
|
||||
double sinh(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
if (x > 0) {
|
||||
double exponentiated = exp(x);
|
||||
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
|
||||
}
|
||||
return (exp(x) - exp(-x)) / 2;
|
||||
}
|
||||
|
||||
double log10(double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double log(double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double fmod(double index, double period)
|
||||
|
@ -85,67 +110,107 @@ double fmod(double index, double period)
|
|||
return index - trunc(index / period) * period;
|
||||
}
|
||||
|
||||
double exp(double)
|
||||
double exp(double exponent)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
double result = 1;
|
||||
if (exponent >= 1) {
|
||||
size_t integer_part = (size_t)exponent;
|
||||
if (integer_part & 1) result *= e_to_power<1>();
|
||||
if (integer_part & 2) result *= e_to_power<2>();
|
||||
if (integer_part > 3) {
|
||||
if (integer_part & 4) result *= e_to_power<4>();
|
||||
if (integer_part & 8) result *= e_to_power<8>();
|
||||
if (integer_part & 16) result *= e_to_power<16>();
|
||||
if (integer_part & 32) result *= e_to_power<32>();
|
||||
if (integer_part >= 64) return std::numeric_limits<double>::infinity();
|
||||
}
|
||||
exponent -= integer_part;
|
||||
} else if (exponent < 0)
|
||||
return 1 / exp(-exponent);
|
||||
double taylor_series_result = 1 + exponent;
|
||||
double taylor_series_numerator = exponent * exponent;
|
||||
taylor_series_result += taylor_series_numerator / factorial<2>();
|
||||
taylor_series_numerator *= exponent;
|
||||
taylor_series_result += taylor_series_numerator / factorial<3>();
|
||||
taylor_series_numerator *= exponent;
|
||||
taylor_series_result += taylor_series_numerator / factorial<4>();
|
||||
taylor_series_numerator *= exponent;
|
||||
taylor_series_result += taylor_series_numerator / factorial<5>();
|
||||
return result * taylor_series_result;
|
||||
}
|
||||
|
||||
double cosh(double)
|
||||
double cosh(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
if (x < 0) {
|
||||
double exponentiated = exp(-x);
|
||||
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
|
||||
}
|
||||
return (exp(x) + exp(-x)) / 2;
|
||||
}
|
||||
|
||||
double atan2(double, double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double atan(double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double asin(double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double acos(double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double fabs(double value)
|
||||
{
|
||||
return value < 0 ? -value : value;
|
||||
}
|
||||
|
||||
double log2(double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
float log2f(float)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
long double log2l(long double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double frexp(double, int*)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
float frexpf(float, int*)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
long double frexpl(long double, int*)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
__BEGIN_DECLS
|
||||
|
||||
#define HUGE_VAL 1e10000
|
||||
#define M_E 2.718281828459045
|
||||
#define M_PI 3.141592653589793
|
||||
#define M_PI_2 (M_PI / 2)
|
||||
#define M_TAU (M_PI * 2)
|
||||
|
|
Loading…
Add table
Reference in a new issue