UserspaceEmulator+LibX86: Start tracking uninitialized memory :^)

This patch introduces the concept of shadow bits. For every byte of
memory there is a corresponding shadow byte that contains metadata
about that memory.

Initially, the only metadata is whether the byte has been initialized
or not. That's represented by the least significant shadow bit.

Shadow bits travel together with regular values throughout the entire
CPU and MMU emulation. There are two main helper classes to facilitate
this: ValueWithShadow and ValueAndShadowReference.

ValueWithShadow<T> is basically a struct { T value; T shadow; } whereas
ValueAndShadowReference<T> is struct { T& value; T& shadow; }.

The latter is used as a wrapper around general-purpose registers, since
they can't use the plain ValueWithShadow memory as we need to be able
to address individual 8-bit and 16-bit subregisters (EAX, AX, AL, AH.)

Whenever a computation is made using uninitialized inputs, the result
is tainted and becomes uninitialized as well. This allows us to track
this state as it propagates throughout memory and registers.

This patch doesn't yet keep track of tainted flags, that will be an
important upcoming improvement to this.

I'm sure I've messed up some things here and there, but it seems to
basically work, so we have a place to start! :^)
This commit is contained in:
Andreas Kling 2020-07-21 02:29:59 +02:00
parent f2d3cc7325
commit be5f42adea
Notes: sideshowbarker 2024-07-19 04:42:04 +09:00
14 changed files with 1088 additions and 752 deletions

View file

@ -77,30 +77,30 @@ void Emulator::setup_stack(const Vector<String>& arguments)
auto stack_region = make<SimpleRegion>(stack_location, stack_size);
stack_region->set_stack(true);
m_mmu.add_region(move(stack_region));
m_cpu.set_esp(stack_location + stack_size);
m_cpu.set_esp(shadow_wrap_as_initialized<u32>(stack_location + stack_size));
Vector<u32> argv_entries;
for (auto& argument : arguments) {
m_cpu.push_string(argument.characters());
argv_entries.append(m_cpu.esp());
argv_entries.append(m_cpu.esp().value());
}
m_cpu.push32(0); // char** envp = { nullptr }
u32 envp = m_cpu.esp();
m_cpu.push32(shadow_wrap_as_initialized<u32>(0)); // char** envp = { nullptr }
u32 envp = m_cpu.esp().value();
m_cpu.push32(0); // char** argv = { argv_entries..., nullptr }
m_cpu.push32(shadow_wrap_as_initialized<u32>(0)); // char** argv = { argv_entries..., nullptr }
for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
m_cpu.push32(argv_entries[i]);
u32 argv = m_cpu.esp();
m_cpu.push32(shadow_wrap_as_initialized(argv_entries[i]));
u32 argv = m_cpu.esp().value();
m_cpu.push32(0); // (alignment)
m_cpu.push32(shadow_wrap_as_initialized<u32>(0)); // (alignment)
u32 argc = argv_entries.size();
m_cpu.push32(envp);
m_cpu.push32(argv);
m_cpu.push32(argc);
m_cpu.push32(0); // (alignment)
m_cpu.push32(shadow_wrap_as_initialized(envp));
m_cpu.push32(shadow_wrap_as_initialized(argv));
m_cpu.push32(shadow_wrap_as_initialized(argc));
m_cpu.push32(shadow_wrap_as_initialized<u32>(0)); // (alignment)
}
bool Emulator::load_elf()
@ -111,15 +111,18 @@ bool Emulator::load_elf()
if (program_header.is_executable() && !program_header.is_writable())
region->set_text(true);
memcpy(region->data(), program_header.raw_data(), program_header.size_in_image());
memset(region->shadow_data(), 0x01, program_header.size_in_memory());
mmu().add_region(move(region));
return;
}
if (program_header.type() == PT_TLS) {
auto tcb_region = make<SimpleRegion>(0x20000000, program_header.size_in_memory());
memcpy(tcb_region->data(), program_header.raw_data(), program_header.size_in_image());
memset(tcb_region->shadow_data(), 0x01, program_header.size_in_image());
auto tls_region = make<SimpleRegion>(0, 4);
tls_region->write32(0, tcb_region->base() + 8);
tls_region->write32(0, shadow_wrap_as_initialized(tcb_region->base() + 8));
memset(tls_region->shadow_data(), 0x01, 4);
mmu().add_region(move(tcb_region));
mmu().set_tls_region(move(tls_region));
@ -195,13 +198,15 @@ Vector<FlatPtr> Emulator::raw_backtrace()
Vector<FlatPtr> backtrace;
backtrace.append(m_cpu.eip());
u32 frame_ptr = m_cpu.ebp();
// FIXME: Maybe do something if the backtrace has uninitialized data in the frame chain.
u32 frame_ptr = m_cpu.ebp().value();
while (frame_ptr) {
u32 ret_ptr = m_mmu.read32({ 0x20, frame_ptr + 4 });
u32 ret_ptr = m_mmu.read32({ 0x20, frame_ptr + 4 }).value();
if (!ret_ptr)
break;
backtrace.append(ret_ptr);
frame_ptr = m_mmu.read32({ 0x20, frame_ptr });
frame_ptr = m_mmu.read32({ 0x20, frame_ptr }).value();
}
return backtrace;
}