For example, consider cases where we want to propagate errors only in
specific instances:
auto result = read_data(); // something like ErrorOr<ByteBuffer>
if (result.is_error() && result.error().code() != EINTR)
continue;
auto bytes = TRY(result);
The TRY invocation will currently copy the byte buffer when the
expression (in this case, just a local variable) is stored into
_temporary_result.
This patch binds the expression to a reference to prevent such copies.
In less trival invocations (such as TRY(some_function()), this will
incur only temporary lifetime extensions, i.e. no functional change.
First, this adds an overload of PrimitiveString::create for StringView.
This overload will throw an OOM completion if creating a String fails.
This is not only a bit more convenient, but it also ensures at compile
time that all PrimitiveString::create(string_view) invocations will be
handled as String and OOM-aware.
Next, this wraps all invocations to PrimitiveString::create(string_view)
with MUST_OR_THROW_OOM.
A small PrimitiveString::create(DeprecatedFlyString) overload also had
to be added to disambiguate between the StringView and DeprecatedString
overloads.
Previously the tool was removing the Root directory after configuring
cmake which was breaking the build, as some cmake rules put some
necessary files there.
Moving the cmake command to be the last one makes it regenerate those
files automatically. :^)
`Stream` will be qualified as `AK::Stream` until we remove the
`Core::Stream` namespace. `IODevice` now reuses the `SeekMode` that is
defined by `SeekableStream`, since defining its own would require us to
qualify it with `AK::SeekMode` everywhere.
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
Having an alias function that only wraps another one is silly, and
keeping the more obvious name should flush out more uses of deprecated
strings.
No behavior change.
For now, this is limited to strings that are 3 bytes or less. We can use
7 bytes on 64-bit platforms, but we do not yet assume 64-bit for Lagom
hosts (e.g. wasm).
In order to prevent this commit from having to refactor almost all of
Intl, the goal here is to update the internal parsing/canonicalization
of locales within LibLocale only. Call sites which are already equiped
to handle String and OOM errors do so, however.
This includes:
- Moving it from Bindings/ to HTML/
- Renaming it from LocationObject to Location
- Removing the manual definitions of the constructor and prototype
- Removing special handling of the Location interface from the bindings
generator
- Converting the JS_DEFINE_NATIVE_FUNCTIONs to regular functions
returning DeprecatedString instead of PrimitiveString
- Adding missing (no-op) setters for the various attributes, which are
expected to exist by the bindings generator
Case folding rules have a similar mapping style as special casing rules,
where one code point may map to zero or more case folding rules. These
will be used for case-insensitive string comparisons. To see how case
folding can differ from other casing rules, consider "ß" (U+00DF):
>>> "ß".lower()
'ß'
>>> "ß".upper()
'SS'
>>> "ß".title()
'Ss'
>>> "ß".casefold()
'ss'
And remove links that aren't adding much value but will often get out of
date (i.e. links to UCD files, which are already all listed in
unicode_data.cmake).
If USING_AK_GLOBALLY is not defined, the name IsLvalueReference might
not be available in the global namespace. Follow the pattern established
in LibTest to fully qualify AK types in macros to avoid this problem.
The old approach was basically a linear scan, which is slower than a
hash map for the currently 303 elements, as evidenced by the new
benchmark in TestCSSIDSpeed.
Before: Completed benchmark 'value_id_from_string' in 3238ms
After: Completed benchmark 'value_id_from_string' in 193ms
Currently, for each exposed interface, we generate one massive function
to create every Web constructor and prototype. In an effort to lazily
create these instead, this first step is to extract the creation of each
of these into its own method.
First, this generates a forwarding header for all IDL types. This is to
allow callers to remain unchanged without forcing them to include the
(very heavy) generated IDL headers. This header is included by LibWeb's
forwarding header.
Next, this defines a base template method on Web::Bindings::Intrinsics
to create a prototype/constructor pair. Specializations of this template
are now generated in a new .cpp file, IntrinsicDefinitions.cpp. The base
Intrinsics class is updated to use this new method, and will continue to
cache the result.
Last, some WebAssembly classes are updated to use this new mechanism.
They were using some ad hoc cache keys that are now in line with the
generated specializations.
That one massive function is still used to invoke these specializations,
so they are not lazy as of this commit.
This propagates errors from user-defined encoders up to IPC::Connection.
There, we currently just log the error, as we aren't in a position to
propagate it further (i.e. we are inside a deferred invocation).
These instances were detected by searching for files that include
AK/Format.h, but don't match the regex:
\\b(CheckedFormatString|critical_dmesgln|dbgln|dbgln_if|dmesgln|FormatBu
ilder|__FormatIfSupported|FormatIfSupported|FormatParser|FormatString|Fo
rmattable|Formatter|__format_value|HasFormatter|max_format_arguments|out
|outln|set_debug_enabled|StandardFormatter|TypeErasedFormatParams|TypeEr
asedParameter|VariadicFormatParams|v_critical_dmesgln|vdbgln|vdmesgln|vf
ormat|vout|warn|warnln|warnln_if)\\b
(Without the linebreaks.)
This regex is pessimistic, so there might be more files that don't
actually use any formatting functions.
Observe that this revealed that Userland/Libraries/LibC/signal.cpp is
missing an include.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
Currently, the generated IPC decoders will default-construct the type to
be decoded, then pass that value by reference to the concrete decoder.
This, of course, requires that the type is default-constructible. This
was an issue for decoding Variants, which had to require the first type
in the Variant list is Empty, to ensure it is default constructible.
Further, this made it possible for values to become uninitialized in
user-defined decoders.
This patch makes the decoder interface such that the concrete decoders
themselves contruct the decoded type upon return from the decoder. To do
so, the default decoders in IPC::Decoder had to be moved to the IPC
namespace scope, as these decoders are now specializations instead of
overloaded methods (C++ requires specializations to be in a namespace
scope).
We now generate all LibGL API wrappers from a single API method
definition list stored in `GLAPI.json`. Since a significant portion of
the OpenGL API methods are relatively consistent variants, we take
advantage of this to generate a lot of these variants at once.
The autogenerated methods check for the non-nullness of the current
`GLContext`, and only perform an action if a `GLContext` is present.
This prevents a crash in ports like GLTron, who assume you can still
call the OpenGL API without an active context.
This increases our API wrapper method count from 211 to 356.
Fixes#15814.
This constructor was easily confused with a copy constructor, and it was
possible to accidentally copy-construct Objects in at least one way that
we dicovered (via generic ThrowCompletionOr construction).
This patch adds a mandatory ConstructWithPrototypeTag parameter to the
constructor to disambiguate it.