This is primarily to be able to remove the GenericLexer include out of
Format.h as well. A subsequent commit will add AK::Result to
GenericLexer, which will cause naming conflicts with other structures
named Result. This can be avoided (for now) by preventing nearly every
file in the system from implicitly including GenericLexer.
Other changes in this commit are to add the GenericLexer include to
files where it is missing.
We are not using this for anything and it's just been sitting there
gathering dust for well over a year, so let's stop carrying all this
complexity around for no good reason.
This patch removes KResult::operator int() and deals with the fallout.
This forces a lot of code to be more explicit in its handling of errors,
greatly improving readability.
To count the remaining children, we simply need to traverse the
directory and increment a counter. No need for a custom virtual that
all file systems have to implement. :^)
Previously, VirtualFileSystem::mkdir() would always return ENOENT if
no parent custody was returned by resolve_path(). This is incorrect when
e.g. the user has no search permission in a component of the path
prefix (=> EACCES), or if on component of the path prefix is a file (=>
ENOTDIR). This patch fixes that behavior.
This adds KLexicalPath::try_join(). As this cannot be done without
allocation, it uses KString and can fail. This patch also uses it at one
place. All the other cases of String::formatted("{}/{}", ...) currently
rely on the return value being a String, which means they cannot easily
be converted to use the new API.
This replaces all uses of LexicalPath in the Kernel with the functions
from KLexicalPath. This also allows the Kernel to stop including
AK::LexicalPath.
This change enforces that paths passed to
VFS::validate_path_against_process_veil are absolute and do not contain
any '..' or '.' parts. We should VERIFY here instead of returning EINVAL
since the code that calls this should resolve non-canonical paths before
calling this function.
Previously, Custody::absolute_path() was called for every call to
validate_path_against_process_veil(). For processes that don't have a
veil, the path is not used by the function. This means that it is
unnecessarily generated. This introduces an overload to
validate_path_against_process_veil(), which takes a Custody const& and
only generates the absolute path if it there is actually a veil and it
is thus needed.
This patch results in a speed up of Assistant's file system cache
building by around 16 percent.
This changes the m_parts, m_dirname, m_basename, m_title and m_extension
member variables to StringViews onto the m_string String. It also
removes the m_is_absolute member in favour of computing if a path is
absolute in the is_absolute() getter. Due to this, the canonicalize()
method has been completely rewritten.
The parts() getter still returns a Vector<String>, although it is no
longer a const reference as m_parts is no longer a Vector<String>.
Rather, it is constructed from the StringViews in m_parts upon request.
The parts_view() getter has been added, which returns Vector<StringView>
const&. Most previous users of parts() have been changed to use
parts_view(), except where Strings are required.
Due to this change, it's is now no longer allow to create temporary
LexicalPath objects to call the dirname, basename, title, or extension
getters on them because the returned StringViews will point to possible
freed memory.
The LexicalPath instance methods dirname(), basename(), title() and
extension() will be changed to return StringView const& in a further
commit. Due to this, users creating temporary LexicalPath objects just
to call one of those getters will recieve a StringView const& pointing
to a possible freed buffer.
To avoid this, static methods for those APIs have been added, which will
return a String by value to avoid those problems. All cases where
temporary LexicalPath objects have been used as described above haven
been changed to use the static APIs.
If m_unveiled_paths.is_empty(), the root node (which is m_unveiled_paths
itself) is the matching veil. This means we should not return nullptr in
this case, but just use the code path for the general case.
This fixes a bug where calling e.g. unveil("/", "r") would refuse you
access to anything, because find_matching_unveiled_path would wrongly
return nullptr.
Since find_matching_unveiled_path can no longer return nullptr, we can
now just return a reference instead.
This modifies the error checks in VFS::open after the call to
resolve_path to ignore a null parent custody if there is no error, as
this is expected when the path to resolve points to "/". Rather, a null
parent custody only constitutes an error if it is accompanied by ENOENT.
This behavior is documented in the VFS::resolve_path_without_veil
method.
To accompany this change, the order of the error checks have been
changed to more naturally fit the new logic.
In VFS::rename, if new_path is equal to '/', then, parent custody is
set to null.
VFS::rename would then use parent custody without checking it first.
Fixed VFS::rename to check both old and new path parent custody
before actually using them.
The error handling in all these cases was still using the old style
negative values to indicate errors. We have a nicer solution for this
now with KResultOr<T>. This change switches the interface and then all
implementers to use the new style.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
There's no real system here, I just added it to various functions
that I don't believe we ever want to call after initialization
has finished.
With these changes, we're able to unmap 60 KiB of kernel text
after init. :^)