SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Now the kernel supports 2 ECAM access methods.
MMIOAccess was renamed to WindowedMMIOAccess and is what we had until
now - each device that is detected on boot is assigned to a
memory-mapped window, so IO operations on multiple devices can occur
simultaneously due to creating multiple virtual mappings, hence the name
is a memory-mapped window.
This commit adds a new class called MMIOAccess (not to be confused with
the old MMIOAccess class). This class creates one memory-mapped window.
On each IO operation on a configuration space of a device, it maps the
requested PCI bus region to that window. Therefore it holds a SpinLock
during the operation to ensure that no other PCI bus region was mapped
during the call.
A user can choose to either use PCI ECAM with memory-mapped window
for each device, or for an entire bus. By default, the kernel prefers to
map the entire PCI bus region.
Instead of mapping a 4KB region to access device configuration space
each time we call one of the PCI helpers, just map them once during
the boot process.
Then, if we request to access one of those devices, we can ask the
PCI subsystem to give us the virtual address where the device's
configuration space is mapped.
.. and make travis run it.
I renamed check-license-headers.sh to check-style.sh and expanded it so
that it now also checks for the presence of "#pragma once" in .h files.
It also checks the presence of a (single) blank line above and below the
"#pragma once" line.
I also added "#pragma once" to all the files that need it: even the ones
we are not check.
I also added/removed blank lines in order to make the script not fail.
I also ran clang-format on the files I modified.
Instead of nesting a bunch of heap allocations, just store them in
a simple HashMap<u16, MMIOSegment>.
Also fix a bunch of double hash lookups like this:
ASSERT(map.contains(key));
auto thing = map.get(key).value();
They now look like this instead:
auto thing = map.get(key);
ASSERT(thing.has_value());
- Make things const when they don't need to be non-const.
- Don't return AK::String when it's always a string literal anyway.
- Remove excessive get_ prefixes per coding style.
Now the ACPI & PCI code is more safer, because we don't use raw pointers
or references to objects or data that are located in the physical
address space, so an accidental dereference cannot happen easily.
Instead, we use the PhysicalAddress class to represent those addresses.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
During initialization of PCI MMIO access mechanism we ensure that we
have an allocation from the kernel virtual address space that cannot be
taken by other components in the OS.
Also, now we ensure that interrupts are disabled so mapping the region
doesn't fail.
In order to reduce overhead, map_device() will map the requested PCI
address only if it's not mapped already.
The run script has been changed so now we can boot a Q35 machine, that
supports PCI ECAM.
To ensure we will be able to load the machine, a PIIX3 IDE controller
was added to the Q35 machine configuration in the run script.
An AHCI controller was added to the i440fx machine configuration.
The new PCI subsystem is initialized during runtime.
PCI::Initializer is supposed to be called during early boot, to
perform a few tests, and initialize the proper configuration space
access mechanism. Kernel boot parameters can be specified by a user to
determine what tests will occur, to aid debugging on problematic
machines.
After that, PCI::Initializer should be dismissed.
PCI::IOAccess is a class that is derived from PCI::Access
class and implements PCI configuration space access mechanism via x86
IO ports.
PCI::MMIOAccess is a class that is derived from PCI::Access
and implements PCI configurtaion space access mechanism via memory
access.
The new PCI subsystem also supports determination of IO/MMIO space
needed by a device by checking a given BAR.
In addition, Every device or component that use the PCI subsystem has
changed to match the last changes.