These are not associated with a javascript realm, so to avoid
confusion about which realm these need to be created in, make
all of these objects a GC::Cell, and deal with the fallout.
It turns out it was a mistake to make this a virtual since
ServiceWorkerAgents are effectively the exact same as
DedicatedWorkerAgents and SharedWorkerAgents just with [[CanBlock]]
set to false.
To allow for adding the concept of a WorkerAgent to be reused
between shared and dedicated workers. An event loop is the
commonality between the different agent types, though, there
are some differences between those event loops which we customize
on the construction of the HTML::EventLoop.
This is better because:
- Better data locality
- Allocate vector for registers+constants+locals+arguments in one go
instead of allocating two vectors separately
similar-origin window agents have the [[CanBlock]] flag set to false.
Achieve this by hooking up JS's concept with an agent to HTML::Agent.
For now, this is only hooked up to the similar-origin window agent
case but should be extended to the other agent types in the future.
While debugging a spec-compliant implementation of ReadableStreamPipeTo,
I spent a lot of time inspecting promise internals. This is much less
noisy if we halve the number of temporary promises.
The special empty value (that we use for array holes, Optional<Value>
when empty and a few other other placeholder/sentinel tasks) still
exists, but you now create one via JS::js_special_empty_value() and
check for it with Value::is_special_empty_value().
The main idea here is to make it very unlikely to accidentally create an
unexpected special empty value.
PrimitiveString is now internally either UTF-8, UTF-16, or both.
We no longer convert them to/from ByteString anywhere, nor does VM have
a ByteString cache.
The intent is that this will replace the separate Task Manager window.
This will allow us to more easily add features such as actual process
management, better rendering of the process table, etc. Included in this
page is the ability to sort table rows.
This also lays the ground work for more internal `about` pages, such as
about:config.
Exactly one place seems to define these at the moment: service worker
clients. Since we don't have a type for these and just use
EnvironmentSettingsObject, I've put it there.
This patch removes those unused 2 algorithms:
1. `fetch_internal_module_script_graph`
2. `fetch_descendants_of_a_module_script`
Those 2 algorithms were removed in spec and are not used in our
codebase.
This is required to store Content Security Policies, as their
Directives are implemented as subclasses with overridden virtual
functions. Thus, they cannot be stored as generic Directive classes, as
it'll lose the ability to call overridden functions when they are
copied.
Before this change, Agent held on to all of the live MutationObserver
objects via GC::Root. This prevented them from ever getting
garbage-collected.
Instead of roots, we now use a simple IntrusiveList and remove them
from it in the finalizer for MutationObserver.
This fixes a massive GC leak on Speedometer.
This makes it more convenient to use the 'relvant agent' concept,
instead of the awkward dynamic casts we needed to do for every call
site.
mutation_observers is also changed to hold a GC::Root instead of raw
GC::Ptr. Somehow this was not causing problems before, but trips up CI
after these changes.
There are essentially 3 URL parsing AOs defined by the spec:
1. Parse a URL
2. Encoding parse a URL
3. Encoding parse a URL and serialize the result
Further, these are replicated between the Document and the ESO.
This patch defines these methods in accordance with the spec and updates
existing users to invoke the correct method. In places where the correct
method is ambiguous, we use the encoding parser to preserve existing ad-
hoc behavior.
These variables are all captured in queued events or other event loop
tasks, but are all guarded by event loop spins later in the function.
The IGNORE_USE_IN_ESCAPING_LAMBDA will soon be required for all locals
that are captured by ref in GC::Function as well as AK::Function.