This ports the lexer to UTF-16 and deals with the immediate fallout up
to the AST. The AST will be dealt with in upcoming commits.
The lexer will still accept UTF-8 strings as input, and will transcode
them to UTF-16 for lexing. This doesn't actually incur a new allocation,
as we were already converting the input StringView to a ByteString for
each lexer.
One immediate logical benefit here is that we do not need to know off-
hand how many UTF-8 bytes some special code points occupy. They all
happen to be a single UTF-16 code unit. So instead of advancing the
lexer by 3 positions in some cases, we can just always advance by 1.
This has quite a lot of fall out. But the majority of it is just type or
UDL substitution, where the changes just fall through to other function
calls.
By changing property key storage to UTF-16, the main affected areas are:
* NativeFunction names must now be UTF-16
* Bytecode identifiers must now be UTF-16
* Module/binding names must now be UTF-16
The special empty value (that we use for array holes, Optional<Value>
when empty and a few other other placeholder/sentinel tasks) still
exists, but you now create one via JS::js_special_empty_value() and
check for it with Value::is_special_empty_value().
The main idea here is to make it very unlikely to accidentally create an
unexpected special empty value.
Resulting in a massive rename across almost everywhere! Alongside the
namespace change, we now have the following names:
* JS::NonnullGCPtr -> GC::Ref
* JS::GCPtr -> GC::Ptr
* JS::HeapFunction -> GC::Function
* JS::CellImpl -> GC::Cell
* JS::Handle -> GC::Root
The main motivation behind this is to remove JS specifics of the Realm
from the implementation of the Heap.
As a side effect of this change, this is a bit nicer to read than the
previous approach, and in my opinion, also makes it a little more clear
that this method is specific to a JavaScript Realm.