Notice that we ensured that the size is a multiple of the page size and
that there is at least one page there, otherwise, this change would be
invalid.
We create an empty region and then expand it:
// First iteration.
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
// Following iterations.
region->expand(region->lower(), addr);
So if the memory region only has one page, we would end up with an empty
region. Thus we need to do one more iteration.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
Sometimes a physical underlying page may be there, but we may be
unable to allocate a page table that may be needed to map it. Bubble
up such mapping errors so that they can be handled more appropriately.
If allocating a page table triggers purging memory, we need to call
quickmap_pd again to make sure the underlying physical page is
remapped to the correct one. This is needed because purging itself
may trigger calls to ensure_pte as well.
Fixes#3370
Add an ExpandableHeap and switch kmalloc to use it, which allows
for the kmalloc heap to grow as needed.
In order to make heap expansion to work, we keep around a 1 MiB backup
memory region, because creating a region would require space in the
same heap. This means, the heap will grow as soon as the reported
utilization is less than 1 MiB. It will also return memory if an entire
subheap is no longer needed, although that is rarely possible.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
Rather than hardcoding where the kmalloc pool should be, place
it at the end of the kernel image instead. This avoids corrupting
global variables or other parts of the kernel as it grows.
Fixes#3257
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
The SI prefixes "k", "M", "G" mean "10^3", "10^6", "10^9".
The IEC prefixes "Ki", "Mi", "Gi" mean "2^10", "2^20", "2^30".
Let's use the correct name, at least in code.
Only changes the name of the constants, no other behavior change.
MemoryManager::quickmap_pd and MemoryManager::quickmap_pt can only
be called by one processor at the time anyway, since anything using
these must have the MM lock held. So, no need to inform the other
CPUs to flush their TLBs, we can just flush our own.
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
When delivering urgent signals to the current thread
we need to check if we should be unblocked, and if not
we need to yield to another process.
We also need to make sure that we suppress context switches
during Process::exec() so that we don't clobber the registers
that it sets up (eip mainly) by a context switch. To be able
to do that we add the concept of a critical section, which are
similar to Process::m_in_irq but different in that they can be
requested at any time. Calls to Scheduler::yield and
Scheduler::donate_to will return instantly without triggering
a context switch, but the processor will then asynchronously
trigger a context switch once the critical section is left.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
Ultimately we should not panic just because we can't fully commit a VM
region (by populating it with physical pages.)
This patch handles some of the situations where commit() can fail.
This caused us to report one purged page per occurrence of the shared
zero page in a purgeable memory region, despite it being a no-op.
Thanks to Sergey for spotting the bad assertion removal that led to
this being found!
This memory range was set up using 2MB pages by the code in boot.S.
Because of that, the kernel image protection code didn't work, since it
assumed 4KB pages.
We now switch to 4KB pages during MemoryManager initialization. This
makes the kernel image protection code work correctly again. :^)