In non-Unicode mode, the existing MatchState::string_position is tracked
in code units; in Unicode mode, it is tracked in code points.
In order for some RegexStringView operations to be performant, it is
useful for the MatchState to have a field to always track the position
in code units. This will allow RegexStringView methods (e.g. operator[])
to perform lookups based on code unit offsets, rather than needing to
iterate over the entire string to find a code point offset.
This changes LibRegex to parse the property escape as a Variant of
Unicode Property & General Category values. A byte code instruction is
added to perform matching based on General Category values.
This supports some binary property matching. It does not support any
properties not yet parsed by LibUnicode, nor does it support value
matching (such as Script_Extensions=Latin).
When the Unicode option is not set, regular expressions should match
based on code units; when it is set, they should match based on code
points. To do so, the regex parser must combine surrogate pairs when
the Unicode option is set. Further, RegexStringView needs to know if
the flag is set in order to return code point vs. code unit based
string lengths and substrings.
ECMA262 requires that the capture groups only contain the values from
the last iteration, e.g. `((c)(a)?(b))` should _not_ contain 'a' in the
second capture group when matching "cabcb".
This commit makes LibRegex (mostly) capable of operating on any of
the three main string views:
- StringView for raw strings
- Utf8View for utf-8 encoded strings
- Utf32View for raw unicode strings
As a result, regexps with unicode strings should be able to properly
handle utf-8 and not stop in the middle of a code point.
A future commit will update LibJS to use the correct type of string
depending on the flags.
When REGEX_DEBUG is enabled, LibRegex dumps a table of information
regarding the state of the regex bytecode execution. The Compare opcode
manipulates state.string_position directly, so the string_position value
cannot be used to display where the comparison started; therefore, this
patch introduces a new variable to keep track of where we were before
the comparison happened.
Previously this would return a pointer which could be null if the
requested opcode was invalid. This should never be the case though
so let's VERIFY() that instead.
This replaces ctype.h with CharacterType.h everywhere I could find
issues with narrowing conversions. While using it will probably make
sense almost everywhere in the future, the most critical places should
have been addressed.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This only applies to the ECMA262 parser.
This behaviour is an ECMA262-specific quirk, such references always
generate zero-length matches (even on subsequent passes).
Also adds a test in LibJS's test suite.
Fixes#6039.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.