The current Color::interpolate_color method does not follow the specs
properly. Started improving it by handling premultiplied alpha in color
interpolation.
Only one WPT test covers this (color-transition-premultiplied), which we
currently pass due to a different approach in Color.mixed_with.
This reverts 0e3487b9ab.
Back when I made that change, I thought we could make our StyleValue
classes match the typed-om definitions directly. However, they have
different requirements. Typed-om types need to be mutable and GCed,
whereas StyleValues are immutable and ideally wouldn't require a JS VM.
While I was already making such a cataclysmic change, I've moved it into
the StyleValues directory, because it *not* being there has bothered me
for a long time. 😅
- Omit calcs that are resolved to `0px` from the serialized value
- Allow CSV to be the 'Z' component in interpolated value.
- Allow calcs with mixed percentages in the first two arguments.
To achieve the third item above the concept of a "special" value parsing
context has been added - this will also be useful for instance for
different arguments of color functions having different contexts.
Gains us 23 WPT tests
Using a generic context argument will allow us to resolve colors in
places where we have all the required information but not in the form of
a layout node as was expected previously.
`CSSColorValue`s which have unresolved `calc` components should be able
to be resolved. Previously we would always resolve them but with
incorrect values.
This is useful as we will now be able to now whether we should serialize
colors in their normalized form or not.
Slight regression in that we now serialize (RGB, HSL and HWB) colors
with components that rely on compute-time information as an empty
string, but that will be fixed in the next commit.
If a property is uses discrete interpolation and TransitionBehavior is
not set to `AllowDiscrete` that property should be non-transitionable.
This is now true for properties whose animation type is not discrete,
but the animation type falls back to discrete.
Previously, we would just assign the UnresolvedStyleValue to each
longhand, which was completely wrong but happened to work if it was a
ShorthandStyleValue (because that's basically a list of "set property X
to Y", and doesn't care which property it's the value of).
For example, the included `var-in-margin-shorthand.html` test would:
1. Set `margin-top` to `var(--a) 10px`
2. Resolve it to `margin-top: 5px 10px`
3. Reject that as invalid
What now happens is:
1. Set `margin-top` to a PendingSubstitutionValue
2. Resolve `margin` to `5px 10px`
3. Expand that out into its longhands
4. `margin-top` is `5px` 🎉
In order to support this, `for_each_property_expanding_shorthands()` now
runs the callback for the shorthand too if it's an unresolved or
pending-substitution value. This is so that we can store those in the
CascadedProperties until they can be resolved - otherwise, by the time
we want to resolve them, we don't have them any more.
`cascade_declarations()` has an unfortunate hack: it tracks, for each
declaration, which properties have already been given values, so that
it can avoid overwriting an actual value with a pending one. This is
necessary because of the unfortunate way that CSSStyleProperties holds
expanded longhands, and not just the original declarations. The spec
disagrees with itself about this, but we do need to do that expansion
for `element.style` to work correctly. This HashTable is unfortunate
but it does solve the problem until a better solution can be found.
This reduces the number of `.cpp` files that need to be recompiled when
one of the below header files changes as follows:
CSS/ComputedProperties.h: 1113 -> 49
CSS/ComputedValues.h: 1120 -> 209
Calc simplification (which I'm working towards) involves repeatedly
deriving a new calculation tree from an existing one, and in many
cases, either the whole result or a portion of it will be identical to
that of the original. Using RefPtr lets us avoid making unnecessary
copies. As a bonus it will also make it easier to return either `this`
or a new node.
In future we could also cache commonly-used nodes, similar to how we do
so for 1px and 0px LengthStyleValues and various keywords.
The only ways this varies from the `scale()` function is with parsing
and serialization. Parsing stays separate, and serialization is done by
telling `TransformationStyleValue` which property it is, and overriding
its normal `to_string()` code for properties other than `transform`.
This reverts commit 76daba3069.
We're going to need separate types for the JS-exposed style values, so
it doesn't make sense for us to match their names with our internal
types.