Before this change, PropertyNameIterator (used by for..in) and
`Object::enumerable_own_property_names()` (used by `Object.keys()`,
`Object.values()`, and `Object.entries()`) enumerated an object's own
enumerable properties exactly as the spec prescribes:
- Call `internal_own_property_keys()`, allocating a list of JS::Value
keys.
- For each key, call internal_get_own_property() to obtain a
descriptor and check `[[Enumerable]]`.
While that is required in the general case (e.g. for Proxy objects or
platform/exotic objects that override `[[OwnPropertyKeys]]`), it's
overkill for ordinary JS objects that store their own properties in the
shape table and indexed-properties storage.
This change introduces `for_each_own_property_with_enumerability()`,
which, for objects where
`eligible_for_own_property_enumeration_fast_path()` is `true`, lets us
read the enumerability directly from shape metadata (and from
indexed-properties storage) without a per-property descriptor lookup.
When we cannot avoid `internal_get_own_property()`, we still
benefit by skipping the temporary `Vector<Value>` of keys and avoiding
the unnecessary round-trip between PropertyKey and Value.
Previously, PutById constructed a PropertyKey from the identifier,
which coerced numeric-like strings to numbers. This moves that decision
to bytecode generation: the bytecode generator now emits PutByNumericId
for numeric keys and PutById for string keys. This removes per-execution
parsing from the interpreter.
1.4x speedup on the following microbenchmark:
```js
const o = {};
for (let i = 0; i < 10_000_000; i++) {
o.a = 1;
o.b = 2;
o.c = 3;
}
```
As the global object is constructed and initialized in a different way
than most other objects we were not setting its prototype! This made
things like "globalThis.toString()" fail unexpectedly.
When changing the attributes of an existing property of an object with
unique shape we must not change the PropertyMetadata offset.
Doing so without resizing the underlying storage vector caused an OOB
write crash.
Fixes#3735.