SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This may seem like a no-op change, however it shrinks down the Kernel by a bit:
.text -432
.unmap_after_init -60
.data -480
.debug_info -673
.debug_aranges 8
.debug_ranges -232
.debug_line -558
.debug_str -308
.debug_frame -40
With '= default', the compiler can do more inlining, hence the savings.
I intentionally omitted some opportunities for '= default', because they
would increase the Kernel size.
When ProcFS could no longer allocate KBuffer objects to serve calls to
read, it would just return 0, indicating EOF. This then triggered
parsing errors because code assumed it read the file.
Because read isn't supposed to return ENOMEM, change ProcFS to populate
the file data upon file open or seek to the beginning. This also means
that calls to open can now return ENOMEM if needed. This allows the
caller to either be able to successfully open the file and read it, or
fail to open it in the first place.
This fixes an issue where TCP sockets could get into the Established
state too quickly and fail to unblock a subsequent sys$select() call.
This makes websites load *significantly* faster. :^)
When SO_TIMESTAMP is set as an option on a SOCK_DGRAM socket, then
recvmsg() will return a SCM_TIMESTAMP control message that
contains a struct timeval with the system time that was current
when the socket was received.
Since the receiving socket isn't yet known at packet receive time,
keep timestamps for all packets.
This is useful for keeping statistics about in-kernel queue latencies
in the future, and it can be used to implement SO_TIMESTAMP.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
Instead of FileDescriptor branching on the type of File it's wrapping,
add a File::stat() function that can be overridden to provide custom
behavior for the stat syscalls.
This fixes a bunch of unchecked kernel reads and writes, seems like they
would might exploitable :). Write of sockaddr_in size to any address you
please...
Note that the data member is of type ImmutableBufferArgument, which has
no Userspace<T> usage. I left it alone for now, to be fixed in a future
change holistically for all usages.
The way getsockopt is implemented for socket types requires us to push
down Userspace<T> using into those interfaces. This change does so, and
utilizes proper copy implementations instead of the kind of haphazard
pointer dereferencing that was occurring there before.
This patch adds a way for a socket to ask to be routed through a
specific interface.
Currently, this option only applies to sending, however, it should also
apply to receiving...somehow :^)
We can now participate in the TCP connection closing handshake. :^)
This implementation is definitely not complete and needs to handle a
bunch of other cases. But it's a huge improvement over not being able
to close connections at all.
Note that we hold on to pending-close sockets indefinitely, until they
are moved into the Closed state. This should also have a timeout but
that's still a FIXME. :^)
Fixes#428.
Calling shutdown prevents further reads and/or writes on a socket.
We should do a few more things based on the type of socket, but this
initial implementation just puts the basic mechanism in place.
Work towards #428.
If there's not enough space in the output buffer for the whole sockaddr
we now simply truncate the address instead of returning EINVAL.
This patch also makes getpeername() actually return the peer address
rather than the local address.. :^)
Move timeout management to the ReadBlocker and WriteBlocker classes.
Also get rid of the specialized ReceiveBlocker since it no longer does
anything that ReadBlocker can't do.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Made getsockopt() and setsockopt() virtual so we can handle them in the
various Socket subclasses. The subclasses map kinda nicely to "levels".
This will allow us to implement things like "traceroute", although..
I spent some time trying to do that, but then hit a wall when it turned
out that the user-mode networking in QEMU doesn't preserve TTL in the
ICMP packets passing through.
* The origin PID is the PID of the process that created this socket,
either explicitly by calling socket(), or implicitly by accepting
a TCP connection. Note that accepting a local socket connection
does not create a new socket, it reuses the one connect() was
called on, so for accepted local sockets the origin PID points
to the connecting process.
* The acceptor PID is the PID of the process that accept()ed this
socket. For accepted TCP sockets, this is the same as origin PID.
This is more logical and allows us to solve the problem of
non-blocking TCP sockets getting stuck in SocketRole::None.
The only complication is that a single LocalSocket may be shared
between two file descriptions (on the connect and accept sides),
and should have two different roles depending from which side
you look at it. To deal with it, Socket::role() is made a
virtual method that accepts a file description, and LocalSocket
internally tracks which FileDescription is the which one and
returns a correct role.
This has several significant changes to the networking stack.
* Significant refactoring of the TCP state machine. Right now it's
probably more fragile than it used to be, but handles quite a lot
more of the handshake process.
* `TCPSocket` holds a `NetworkAdapter*`, assigned during `connect()` or
`bind()`, whichever comes first.
* `listen()` is now virtual in `Socket` and intended to be implemented
in its child classes
* `listen()` no longer works without `bind()` - this is a bit of a
regression, but listening sockets didn't work at all before, so it's
not possible to observe the regression.
* A file is exposed at `/proc/net_tcp`, which is a JSON document listing
the current TCP sockets with a bit of metadata.
* There's an `ETHERNET_VERY_DEBUG` flag for dumping packet's content out
to `kprintf`. It is, indeed, _very debug_.
The situations in IPv4Socket and LocalSocket were mirrors of each other
where one had implemented read/write as wrappers and the other had
sendto/recvfrom as wrappers.
Instead of this silliness, move read and write up to the Socket base.
Then mark them final, so subclasses have no choice but to implement
sendto and recvfrom.
Also tweak the kernel's Makefile to use -nostdinc and -nostdinc++.
This prevents us from picking up random headers from ../Root, which may
include older versions of kernel headers.
Since we still need <initializer_list> for Vector, we specifically include
the necessary GCC path. This is a bit hackish but it works for now.
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).
Also run it across the whole tree to get everything using the One True Style.
We don't yet run this in an automated fashion as it's a little slow, but
there is a snippet to do so in makeall.sh.