Previously, `Heap` would store serialized data in blocks of 1024 bytes
regardless of the actual length. Data longer than 1024 bytes was
silently truncated causing database corruption.
This changes the heap storage to prefix every block with two new fields:
the total data size in bytes, and the next block to retrieve if the data
is longer than what can be stored inside a single block. By chaining
blocks together, we can store arbitrary amounts of data without needing
to change anything of the logic in the rest of LibSQL.
As part of these changes, the "free list" is also removed from the heap
awaiting an actual implementation: it was never used.
Note that this bumps the database version from 3 to 4, and as such
invalidates (deletes) any database opened with LibSQL that is not
version 4.
We are performing a lot of checks on pointers that are performed again
immediately afterwards because of a dereference. This removes the
redundant `VERIFY`s and simplifies a couple others.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
After splitting a node, the new node was written to the same pointer as
the current node - probably a copy / paste error. This new code requires
a `.pointer() -> u32` to exist on the object to be serialized,
preventing this issue from happening again.
Fixes#15844.
This prevents us from needing a sv suffix, and potentially reduces the
need to run generic code for a single character (as contains,
starts_with, ends_with etc. for a char will be just a length and
equality check).
No functional changes.
Classes reading and writing to the data heap would communicate directly
with the Heap object, and transfer ByteBuffers back and forth with it.
This makes things like caching and locking hard. Therefore all data
persistence activity will be funneled through a Serializer object which
in turn submits it to the Heap.
Introducing this unfortunately resulted in a huge amount of churn, in
which a number of smaller refactorings got caught up as well.