In the future, we should allow mounting any block device. At the moment
there is too much filesystem code that depends on the underlying device
being a DiskDevice.
- You must now have superuser privileges to use mount().
- We now verify that the mount point is a valid path first, before
trying to find a filesystem on the specified device.
- Convert some dbgprintf() to dbg().
It is now possible to mount ext2 `DiskDevice` devices under Serenity on
any folder in the root filesystem. Currently any user can do this with
any permissions. There's a fair amount of assumptions made here too,
that might not be too good, but can be worked on in the future. This is
a good start to allow more dynamic operation under the OS itself.
It is also currently impossible to unmount and such, and devices will
fail to mount in Linux as the FS 'needs to be cleaned'. I'll work on
getting `umount` done ASAP to rectify this (as well as working on less
assumption-making in the mount syscall. We don't want to just be able
to mount DiskDevices!). This could probably be fixed with some `-t`
flag or something similar.
Processes can now have an icon assigned, which is essentially a 16x16 RGBA32
bitmap exposed as a shared buffer ID.
You set the icon ID by calling set_process_icon(int) and the icon ID will be
exposed through /proc/all.
To make this work, I added a mechanism for making shared buffers globally
accessible. For safety reasons, each app seals the icon buffer before making
it global.
Right now the first call to GWindow::set_icon() is what determines the
process icon. We'll probably change this in the future. :^)
This is expensive because we have to page in the entire executable for every
process up front for this to work. This is due to the page fault code not
being strong enough to run while another process is active.
Note that we already had userspace symbols in *crash* stacks. This patch
adds them generally, so they show up in /proc, Process Manager, etc.
There's room for improvement here, but the debugging benefits way overshadow
the performance penalty right now. :^)
This makes assertion failures generate backtraces again. Sorry to everyone
who suffered from the lack of backtraces lately. :^)
We share code with the /proc/PID/stack implementation. You can now get the
current backtrace for a Thread via Thread::backtrace(), and all the traces
for a Process via Process::backtrace().
The syscall is quite simple:
int watch_file(const char* path, int path_length);
It returns a file descriptor referring to a "InodeWatcher" object in the
kernel. It becomes readable whenever something changes about the inode.
Currently this is implemented by hooking the "metadata dirty bit" in
Inode which isn't perfect, but it's a start. :^)
The "stddbg" stream was a cute idea but we never ended up using it in
practice, so let's simplify this and implement userspace dbgprintf() on top
of a simple dbgputch() syscall instead.
This makes debugging LibC startup a little bit easier. :^)
This is very simple but already very useful. Now you're able to call to
dump_backtrace() from anywhere userspace to get a nice symbolicated
backtrace in the debugger output. :^)
And use this to return EINTR in various places; some of which we were
not handling properly before.
This might expose a few bugs in userspace, but should be more compatible
with other POSIX systems, and is certainly a little cleaner.
It's a very bad idea to increment the refcount on behalf of another
process. That process may (for either benign or evil reasons) not
reference the SharedBuffer, and then we'll be stuck with loads of
SharedBuffers until we OOM.
Instead, increment the refcount when the buffer is mapped. That way, a
buffer is only kept if *someone* has explicitly requested it via
get_shared_buffer.
Fixes#341
Generate a special page containing the "return from signal" trampoline code
on startup and then route signalled threads to it. This avoids a page
allocation in every process that ever receives a signal.
Region now has is_user_accessible(), which informs the memory manager how
to map these pages. Previously, we were just passing a "bool user_allowed"
to various functions and I'm not at all sure that any of that was correct.
All the Region constructors are now hidden, and you must go through one of
these helpers to construct a region:
- Region::create_user_accessible(...)
- Region::create_kernel_only(...)
That ensures that we don't accidentally create a Region without specifying
user accessibility. :^)
"Blocking" is not terribly informative, but now that everything is
ported over, we can force the blocker to provide us with a reason.
This does mean that to_string(State) needed to become a member, but
that's OK.
Rolling with the theme of adding a dialog to shutdown the machine, it is
probably nice to have a way to reboot the machine without performing a full
system powerdown.
A reboot program has been added to `/bin/` as well as a corresponding
`syscall` (SC_reboot). This syscall works by attempting to pulse the 8042
keyboard controller. Note that this is NOT supported on new machines, and
should only be a fallback until we have proper ACPI support.
The implementation causes a triple fault in QEMU, which then restarts the
system. The filesystems are locked and synchronized before this occurs,
so there shouldn't be any corruption etctera.
This allows us to seal a buffer *before* anyone else has access to it
(well, ok, the creating process still does, but you can't win them all).
It also means that a SharedBuffer can be shared with multiple clients:
all you need is to have access to it to share it on again.
Exec doesn't leave through the syscall handler, so it didn't unlock the
big_lock. This means that reentering can lock it again, and then another
thread could endlessly yield waiting to acquire the lock (futilely).
This fixes AudioServer using 100% CPU.
We were locking the list of references, and then destroying the
reference, which made things go a little crazy.
It's more straightforward to just remove the per-reference lock: the
syscalls all have to lock the full list anyway, so let's just do that
and avoid the hassle.
While I'm at it, also move the SharedBuffer code out to its own file as it's
getting a little long and unwieldly, and Process.cpp is already huge.
Rather than limiting it to two shared processes, store a Vector of
references, so we can add more if we want. Makes the code a little
more generic.
No actual change to the syscall interface yet, so nothing takes
advantage of this yet.
This makes waitpid() return when a child process is stopped via a signal.
Use this in Shell to catch stopped children and return control to the
command line. :^)
Fixes#298.
This is obviously more readable. If we ever run into a situation where
ref count churn is actually causing trouble in the future, we can deal with
it then. For now, let's keep it simple. :^)
Instead of computing the path length inside the syscall handler, let the
caller do that work. This allows us to implement to new variants of open()
and creat(), called open_with_path_length() and creat_with_path_length().
These are suitable for use with e.g StringView.
String&& is just not very practical. Also return const String& when the
returned string is a member variable. The call site is free to make a copy
if he wants, but otherwise we can avoid the retain count churn.