This was a holdover from the old times when each Process had a special
main thread with TID 0. Using it was a total crapshoot since it would
just return whichever thread was first on the process's thread list.
Now that I've removed all uses of it, we don't need it anymore. :^)
Instead of falling back to the suspicious "any_thread()" mechanism,
just fail with ESRCH if you try to kill() a PID that doesn't have a
corresponding TID.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
We stopped using gettimeofday() in Core::EventLoop a while back,
in favor of clock_gettime() for monotonic time.
Maintaining an optimization for a syscall we're not using doesn't make
a lot of sense, so let's go back to the old-style sys$gettimeofday().
You can still open files that have sockets attached to them from inside
the kernel via VFS::open() (and in fact, that is what LocalSocket itslef uses),
but trying to do that from userspace using open() will now fail with ENXIO.
Ultimately we should not panic just because we can't fully commit a VM
region (by populating it with physical pages.)
This patch handles some of the situations where commit() can fail.
This patch adds PageFaultResponse::OutOfMemory which informs the fault
handler that we were unable to allocate a necessary physical page and
cannot continue.
In response to this, the kernel will crash the current process. Because
we are OOM, we can't symbolicate the crash like we normally would
(since the ELF symbolication code needs to allocate), so we also
communicate to Process::crash() that we're out of memory.
Now we can survive "allocate 300 MB" (only the allocate process dies.)
This is definitely not perfect and can easily end up killing a random
innocent other process who happened to allocate one page at the wrong
time, but it's a *lot* better than panicking on OOM. :^)
Utilize the new Thread::wait_on timeout parameter to implement
timeout support for FUTEX_WAIT.
As we compute the relative time from the user specified absolute
time, we try to delay that computation as long as possible before
we call into Thread::wait_on(..). To enable this a small bit of
refactoring was done pull futex_queue fetching out and timeout fetch
and calculation separation.
This is a special case that was previously not implemented.
The idea is that you can dispatch a signal to all other processes
the calling process has access to.
There was some minor refactoring to make the self signal logic
into a function so it could easily be easily re-used from do_killall.
Previously, when returning from a pthread's start_routine, we would
segfault. Now we instead implicitly call pthread_exit as specified in
the standard.
pthread_create now creates a thread running the new
pthread_create_helper, which properly manages the calling and exiting
of the start_routine supplied to pthread_create. To accomplish this,
the thread's stack initialization has been moved out of
sys$create_thread and into the userspace function create_thread.
POSIX says, "Conforming applications should not assume that the returned
contents of the symbolic link are null-terminated."
If we do include the null terminator into the returning string, Python
believes it to actually be a part of the returned name, and gets unhappy
about that later. This suggests other systems Python runs in don't include
it, so let's do that too.
Also, make our userspace support non-null-terminated realpath().
PT_SETTREGS sets the regsiters of the traced thread. It can only be
used when the tracee is stopped.
Also, refactor ptrace.
The implementation was getting long and cluttered the alraedy large
Process.cpp file.
This commit moves the bulk of the implementation to Kernel/Ptrace.cpp,
and factors out peek & poke to separate methods of the Process class.
This was a missing feature in the PT_TRACEME command.
This feature allows the tracer to interact with the tracee before the
tracee has started executing its program.
It will be useful for automatically inserting a breakpoint at a
debugged program's entry point.
PT_POKE writes a single word to the tracee's address space.
Some caveats:
- If the user requests to write to an address in a read-only region, we
temporarily change the page's protections to allow it.
- If the user requests to write to a region that's backed by a
SharedInodeVMObject, we replace the vmobject with a PrivateIndoeVMObject.
This patch adds the minherit() syscall originally invented by OpenBSD.
Only the MAP_INHERIT_ZERO mode is supported for now. If set on an mmap
region, that region will be zeroed out on fork().
These validate_elf_* methods really had no business being static
methods of ELF::Image. Now that the ELF namespace exists, it makes
sense to just move them to be free functions in the namespace.
If we don't support ACPI, just don't instantiate an ACPI parser.
This is way less confusing than having a special parser class whose
only purpose is to do nothing.
We now search for the RSDP in ACPI::initialize() instead of letting
the parser constructor do it. This allows us to defer the decision
to create a parser until we're sure we can make a useful one.
This commit adds a basic implementation of
the ptrace syscall, which allows one process
(the tracer) to control another process (the tracee).
While a process is being traced, it is stopped whenever a signal is
received (other than SIGCONT).
The tracer can start tracing another thread with PT_ATTACH,
which causes the tracee to stop.
From there, the tracer can use PT_CONTINUE
to continue the execution of the tracee,
or use other request codes (which haven't been implemented yet)
to modify the state of the tracee.
Additional request codes are PT_SYSCALL, which causes the tracee to
continue exection but stop at the next entry or exit from a syscall,
and PT_GETREGS which fethces the last saved register set of the tracee
(can be used to inspect syscall arguments and return value).
A special request code is PT_TRACE_ME, which is issued by the tracee
and causes it to stop when it calls execve and wait for the
tracer to attach.