Previously, the Object class had many different types of functions for
each action. For example: get_by_index, get(PropertyName),
get(FlyString). This is a bit verbose, so these methods have been
shortened to simply use the PropertyName structure. The methods then
internally call _by_index if necessary. Note that the _by_index
have been made private to enforce this change.
Secondly, a clear distinction has been made between "putting" and
"defining" an object property. "Putting" should mean modifying a
(potentially) already existing property. This is akin to doing "a.b =
'foo'".
This implies two things about put operations:
- They will search the prototype chain for setters and call them, if
necessary.
- If no property exists with a particular key, the put operation
should create a new property with the default attributes
(configurable, writable, and enumerable).
In contrast, "defining" a property should completely overwrite any
existing value without calling setters (if that property is
configurable, of course).
Thus, all of the many JS objects have had any "put" calls changed to
"define_property" calls. Additionally, "put_native_function" and
"put_native_property" have had their "put" replaced with "define".
Finally, "put_own_property" has been made private, as all necessary
functionality should be exposed with the put and define_property
methods.
This patch is unfortunately rather large and might make some things feel
bloated, but it is necessary to fix a few flaws in LibJS, primarily
blindly coercing values to numbers without exception checks - i.e.
interpreter.argument(0).to_i32(); // can fail!!!
Some examples where the interpreter would actually crash:
var o = { toString: () => { throw Error() } };
+o;
o - 1;
"foo".charAt(o);
"bar".repeat(o);
To fix this, we now have the following...
to_double(Interpreter&)
to_i32()
to_i32(Interpreter&)
to_size_t()
to_size_t(Interpreter&)
...and a whole lot of exception checking.
There's intentionally no to_double(), use as_double() directly instead.
This way we still can use these convenient utility functions but don't
need to check for exceptions if we are sure the value already is a
number.
Fixes#2267.
Passing a Heap& to it only to then call interpreter() on that is weird.
Let's just give it the Interpreter& directly, like some of the other
to_something() functions.
There are now two API's on Value:
- Value::to_string(Interpreter&) -- may throw.
- Value::to_string_without_side_effects() -- will never throw.
These are some pretty big sweeping changes, so it's possible that I did
some part the wrong way. We'll work it out as we go. :^)
Fixes#2123.
This implements only one of the two forms of this function,
ctx.fill(winding_rule).
Also tweaks the quadratic curve demo to have a nice looking filled
shape.
Everyone who constructs an Object must now pass a prototype object when
applicable. There's still a fair amount of code that passes something
fetched from the Interpreter, but this brings us closer to being able
to detach prototypes from Interpreter eventually.
This patch adds the following methods to CanvasRenderingContext2D:
- beginPath()
- moveTo(x, y)
- lineTo(x, y)
- closePath()
- stroke()
We also add the lineWidth property. :^)
Add an implementation of CanvasRenderingContext2DWrapper.strokeRect().
While implementing this I fixed fillRect() and the new strokeRect() to
honor the .scale() and .translate() values that had previously been plumbed.
Also enhance the canvas.html demo to utilize strokeRect(), scale(), and translate().
Instead of implementing every native function as a lambda function,
use static member functions instead.
This makes it easier to navigate the code + backtraces look nicer. :^)
Native functions now only get the Interpreter& as an argument. They can
then extract |this| along with any indexed arguments it wants from it.
This forces functions that want |this| to actually deal with calling
interpreter.this_value().to_object(), and dealing with the possibility
of a non-object |this|.
This is still not great but let's keep massaging it forward.
This patch adds HTMLCanvasElement along with a LayoutCanvas object.
The DOM and layout parts are very similar to <img> elements.
The <canvas> element holds a Gfx::Bitmap which is sized according to
the "width" and "height" attributes on the element.
Calling .getContext("2d") on a <canvas> element gives you a context
object that draws into the underlying Gfx::Bitmap of the <canvas>.
The context weakly points to the <canvas> which allows it to outlive
the canvas element if needed.
This is really quite cool. :^)