We only supported headless clipboard management in test-web. So when WPT
tests the clipboard APIs, we would blindly try to access the Qt app,
which does not exist.
Note that the AppKit UI has no such restriction, as the NSPasteboard is
accessible even without a GUI.
To detect system time zone changes on Windows, the event we need to look
for is WM_TIMECHANGE. The problem is how the callback with said message
actually gets invoked is very particular. (1) We must have an active
message pump (event loop) for the message to ever be processed. (2) We
must be a GUI application as WM_TIMECHANGE messages are seemingly sent
to top level windows only. It doesn't say that in the docs for the
event, but attempts of creating a LibTest-based application with a
message pump and a message only window and never receiving the event
point to that probably being true.
This workaround is built off the fact that Qt's message pump defined
internally in QEventDispatcherWin32::processEvents does in fact receive
WM_TIMECHANGE events, even though it is not exposed as a QEvent::Type.
Given the requirements stated above it makes sense that it works here as
the message pump is executing in a QGuiApplication context. So we use a
native event filter to hook into the unexposed WM_TIMECHANGE event and
forward it along to the on_time_zone_changed() callback.
Note that if a Windows GUI framework is done in the future, we'll have
to re-add support to ensure the TimeZoneWatcher still gets invoked.
Clipboard handling largely has nothing to do with the individual web
views. Rather, we interact with the system clipboard at the application
level. So let's move these implementations to the Application.
This lets us avoid each UI needing to handle link clicks directly, and
lets actions stored in LibWebView avoid awkwardly going through the link
click callbacks to open URLs.
In particular, we need to defer creating the process manager until after
we have decided whether or not to create a UI-specific event loop. If we
create the process manager sooner, its event loop signal registration
does not work, and we don't handle child processes exiting.
You would have to just know that you need to define the constructor with
this declaration. Let's allow subclasses to define constructors as they
see fit.
This is causing errors on the WPT runner, which does not have a display
output. To do this requires shuffling around the Main::Arguments struct,
as we now need access to it from overridden WebView::Application methods
after construction.
We currently create a separate headless-browser application to serve two
purposes:
1. Allow headless browsing to take a screenshot of a page or print its
layout tree / internal text.
2. Run the LibWeb test framework.
This patch migrates (1) to the main Ladybird executable. The --headless
flag enables this mode. This matches the behavior of other browsers, and
means we have one less executable to ship at distribution time.
We want to avoid creating too many AppKit / Qt facilities in headless
mode. So this involves some shuffling of application init to ensure we
don't create them until after we've parsed the command line arguments.
Namely, we avoid creating the NSApp in AppKit and QCoreApplication in
Qt. Doing so also requires that we don't create the application event
loop until we've parsed the command line as well, because the loop we
create depends on whether we're creating those UI facilities.
LibWebView now knows how to launch RequestServer and ImageDecoderServer
without help from the UI, so let's move ownership of these services over
to LibWebView for de-duplication.