This is really a basic support for AHCI hotplug events, so we know how
to add a node representing the device in /sys/dev/block and removing it
according to the event type (insertion/removal).
This change doesn't take into account what happens if the device was
mounted or a read/write operation is being handled.
For this to work correctly, StorageManagement now uses the Singleton
container, as it might be accessed simultaneously from many CPUs
for hotplug events. DiskPartition holds a WeakPtr instead of a RefPtr,
to allow removal of a StorageDevice object from the heap.
StorageDevices are now stored and being referenced to via an
IntrusiveList to make it easier to remove them on hotplug event.
In future changes, all of the stated above might change, but for now,
this commit represents the least amount of changes to make everything
to work correctly.
These files are not marked as block devices or character devices so they
are not meant to be used as device nodes. The filenames are formatted to
the pattern "major:minor", but a Userland program need to call the parse
these format and inspect the the major and minor numbers and create the
real device nodes in /dev.
Later on, it might be a good idea to ensure we don't create new
SysFSComponents on the heap for each Device, but rather generate
them only when required (and preferably to not create a SysFSComponent
at all if possible).
Devices might be removed and inserted at anytime, so let's ensure we
always do these kind of operations with a good known state of the
HashMap.
The VirtIO code was modified to create devices outside the IRQ handler,
so now it works with the new locking of the devices singleton, but a
better approach might be needed later on.
These methods are no longer needed because SystemServer is able to
populate the DevFS on its own.
Device absolute_path no longer assume a path to the /dev location,
because it really should not assume any path to a Device node.
Because StorageManagement still needs to know the storage name, we
declare a virtual method only for StorageDevices to override, but this
technique should really be removed later on.
A couple of things were changed:
1. Semantic changes - PCI segments are now called PCI domains, to better
match what they are really. It's also the name that Linux gave, and it
seems that Wikipedia also uses this name.
We also remove PCI::ChangeableAddress, because it was used in the past
but now it's no longer being used.
2. There are no WindowedMMIOAccess or MMIOAccess classes anymore, as
they made a bunch of unnecessary complexity. Instead, Windowed access is
removed entirely (this was tested, but never was benchmarked), so we are
left with IO access and memory access options. The memory access option
is essentially mapping the PCI bus (from the chosen PCI domain), to
virtual memory as-is. This means that unless needed, at any time, there
is only one PCI bus being mapped, and this is changed if access to
another PCI bus in the same PCI domain is needed. For now, we don't
support mapping of different PCI buses from different PCI domains at the
same time, because basically it's still a non-issue for most machines
out there.
2. OOM-safety is increased, especially when constructing the Access
object. It means that we pre-allocating any needed resources, and we try
to find PCI domains (if requested to initialize memory access) after we
attempt to construct the Access object, so it's possible to fail at this
point "gracefully".
3. All PCI API functions are now separated into a different header file,
which means only "clients" of the PCI subsystem API will need to include
that header file.
4. Functional changes - we only allow now to enumerate the bus after
a hardware scan. This means that the old method "enumerate_hardware"
is removed, so, when initializing an Access object, the initializing
function must call rescan on it to force it to find devices. This makes
it possible to fail rescan, and also to defer it after construction from
both OOM-safety terms and hotplug capabilities.
This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.
The default template argument is only used in one place, and it
looks like it was probably just an oversight. The rest of the Kernel
code all uses u8 as the type. So lets make that the default and remove
the unused template argument, as there doesn't seem to be a reason to
allow the size to be customizable.
This commit moves the KResult and KResultOr objects to Kernel/API to
signify that they may now be freely used by userspace code at points
where a syscall-related error result is to be expected. It also exposes
KResult and KResultOr to the global namespace to make it nicer to use
for userspace code.
This is the idiomatic way to declare type aliases in modern C++.
Flagged by Sonar Cloud as a "Code Smell", but I happen to agree
with this particular one. :^)
Previous implementation sometimes didn't release the key after pressing
and holding shift due to repeating key updates when holding keys. This
meant repeating updates would set/unset `m_both_shift_keys_pressed`
repeatedly, sometimes resulting in shift still being considered pressed
even after you released it.
Simplify left and right shift key pressed logic by tracking both key
states separately and always updating modifiers based on them.
Prior to this change, both uid_t and gid_t were typedef'ed to `u32`.
This made it easy to use them interchangeably. Let's not allow that.
This patch adds UserID and GroupID using the AK::DistinctNumeric
mechanism we've already been employing for pid_t/ProcessID.
Two new ioctl requests are used to get and set the sample rate of the
sound card. The SB16 device keeps track of the sample rate separately,
because I don't want to figure out how to read the sample rate from the
device; it's easier that way.
The soundcard write doesn't set the sample rate to 44100 Hz every time
anymore, as we want to change it externally.
Now that the old PCI::Device was removed, we can complete the PCI
changes by making the PCI::DeviceController to be named PCI::Device.
Really the entire purpose and the distinction between the two was about
interrupts, but since this is no longer a problem, just rename it to
simplify things further.
I created this class a long time ago just to be able to quickly make a
PCI device to also represent an interrupt handler (because PCI devices
have this capability for most devices).
Then after a while I introduced the PCI::DeviceController, which is
really almost the same thing (a PCI device class that has Address member
in it), but is not tied to interrupts so it can have no interrupts, or
spawn interrupt handlers however it wants to seems fit.
However I decided it's time to say goodbye for this class for
a couple of reasons:
1. It made a whole bunch of weird patterns where you had a PCI::Device
and a PCI::DeviceController being used in the topic of implementation,
where originally, they meant to be used mutually exclusively (you
can't and really don't want to use both).
2. We can really make all the classes that inherit from PCI::Device
to inherit from IRQHandler at this point. Later on, when we have MSI
interrupts support, we can go further and untie things even more.
3. It makes it possible to simplify the VirtIO implementation to a great
extent. While this commit almost doesn't change it, future changes
can untangle some complexity in the VirtIO code.
For UHCIController, E1000NetworkAdapter, NE2000NetworkAdapter,
RTL8139NetworkAdapter, RTL8168NetworkAdapter, E1000ENetworkAdapter we
are simply making them to inherit the IRQHandler. This makes some sense,
because the first 3 devices will never support anything besides IRQs.
For the last 2, they might have MSI support, so when we start to utilize
those, we might need to untie these classes from IRQHandler and spawn
IRQHandler(s) or MSIHandler(s) as needed.
The VirtIODevice class is also a case where we currently need to use
both PCI::DeviceController and IRQHandler classes as parents, but it
could also be untied from the latter.
This has several benefits:
1) We no longer just blindly derefence a null pointer in various places
2) We will get nicer runtime error messages if the current process does
turn out to be null in the call location
3) GCC no longer complains about possible nullptr dereferences when
compiling without KUBSAN
This makes for nicer handling of errors compared to checking whether a
RefPtr is null. Additionally, this will give way to return different
types of errors in the future.
...and also RangeAllocator => VirtualRangeAllocator.
This clarifies that the ranges we're dealing with are *virtual* memory
ranges and not anything else.
Now that all KResult and KResultOr are used consistently throughout the
kernel, it's no longer necessary to return negative error codes.
However, we were still doing that in some places, so let's fix all those
(bugs) by removing the minuses. :^)
It's easy to forget the responsibility of validating and safely copying
kernel parameters in code that is far away from syscalls. ioctl's are
one such example, and bugs there are just as dangerous as at the root
syscall level.
To avoid this case, utilize the AK::Userspace<T> template in the ioctl
kernel interface so that implementors have no choice but to properly
validate and copy ioctl pointer arguments.
GCC and Clang allow us to inject a call to a function named
__sanitizer_cov_trace_pc on every edge. This function has to be defined
by us. By noting down the caller in that function we can trace the code
we have encountered during execution. Such information is used by
coverage guided fuzzers like AFL and LibFuzzer to determine if a new
input resulted in a new code path. This makes fuzzing much more
effective.
Additionally this adds a basic KCOV implementation. KCOV is an API that
allows user space to request the kernel to start collecting coverage
information for a given user space thread. Furthermore KCOV then exposes
the collected program counters to user space via a BlockDevice which can
be mmaped from user space.
This work is required to add effective support for fuzzing SerenityOS to
the Syzkaller syscall fuzzer. :^) :^)