Linux creates holes in block lists for all-zero content. This is very
reasonable and we can now handle that situation as well.
Note that we're not smart enough to generate these holes ourselves yet,
but now we can at least read from such files.
If we get an -ENOENT when resolving the target because of some part, that is not
the very last part, missing, we should just return the error instead of panicking
later :^)
To test:
$ mkdir /tmp/foo/
$ mv /tmp/foo/ /tmp/bar/
Related to https://github.com/SerenityOS/serenity/issues/1253
This is apparently a special case unlike any other, so let's handle it
directly in VFS::mkdir() instead of adding an alternative code path into
VFS::resolve_path().
Fixes https://github.com/SerenityOS/serenity/issues/1253
This was only used by HashTable::dump() which I used when doing the
first HashTable implementation. Removing this allows us to also remove
most includes of <AK/kstdio.h>.
Previously this API would return an InodeIdentifier, which meant that
there was a race in path resolution where an inode could be unlinked
in between finding the InodeIdentifier for a path component, and
actually resolving that to an Inode object.
Attaching a test that would quickly trip an assertion before.
Test: Kernel/path-resolution-race.cpp
This implementation uses the new helper method of Bitmap called
find_longest_range_of_unset_bits. This method looks for the biggest
range of contiguous bits unset in the bitmap and returns the start of
the range back to the caller.
We should use dbg() instead of dbgprintf() as much as possible to
protect ourselves against format string bugs. Here's a bunch of
conversions in Ext2FS.
This changes copyright holder to myself for the source code files that I've
created or have (almost) completely rewritten. Not included are the files
that were significantly changed by others even though it was me who originally
created them (think HtmlView), or the many other files I've contributed code to.
A process has one of three veil states:
- None: unveil() has never been called.
- Dropped: unveil() has been called, and can be called again.
- Locked: unveil() has been called, and cannot be called again.
When using dbg() in the kernel, the output is automatically prefixed
with [Process(PID:TID)]. This makes it a lot easier to understand which
thread is generating the output.
This patch also cleans up some common logging messages and removes the
now-unnecessary "dbg() << *current << ..." pattern.
Sergey suggested that having a non-zero O_RDONLY would make some things
less confusing, and it seems like he's right about that.
We can now easily check read/write permissions separately instead of
dancing around with the bits.
This patch also fixes unveil() validation for O_RDWR which previously
forgot to check for "r" permission.
This syscall is a complement to pledge() and adds the same sort of
incremental relinquishing of capabilities for filesystem access.
The first call to unveil() will "drop a veil" on the process, and from
now on, only unveiled parts of the filesystem are visible to it.
Each call to unveil() specifies a path to either a directory or a file
along with permissions for that path. The permissions are a combination
of the following:
- r: Read access (like the "rpath" promise)
- w: Write access (like the "wpath" promise)
- x: Execute access
- c: Create/remove access (like the "cpath" promise)
Attempts to open a path that has not been unveiled with fail with
ENOENT. If the unveiled path lacks sufficient permissions, it will fail
with EACCES.
Like pledge(), subsequent calls to unveil() with the same path can only
remove permissions, not add them.
Once you call unveil(nullptr, nullptr), the veil is locked, and it's no
longer possible to unveil any more paths for the process, ever.
This concept comes from OpenBSD, and their implementation does various
things differently, I'm sure. This is just a first implementation for
SerenityOS, and we'll keep improving on it as we go. :^)
Background: DoubleBuffer is a handy buffer class in the kernel that
allows you to keep writing to it from the "outside" while the "inside"
reads from it. It's used for things like LocalSocket and TTY's.
Internally, it has a read buffer and a write buffer, but the two will
swap places when the read buffer is exhausted (by reading from it.)
Before this patch, it was internally implemented as two Vector<u8>
that we would swap between when the reader side had exhausted the data
in the read buffer. Now instead we preallocate a large KBuffer (64KB*2)
on DoubleBuffer construction and use that throughout its lifetime.
This removes all the kmalloc heap traffic caused by DoubleBuffers :^)
Before this, we would end up in memcpy() churn hell when a program was
doing repeated write() calls to a file in /tmp.
An even better solution will be to only grow the VM allocation of the
underlying buffer and keep using the same physical pages. This would
eliminate all the memcpy() work.
I've benchmarked this using g++ to compile Kernel/Process.cpp.
With these changes, compilation goes from ~35 sec to ~31 sec. :^)
Previously, VFS::open() would only use the passed flags for permission checking
purposes, and Process::sys$open() would set them on the created FileDescription
explicitly. Now, they should be set by VFS::open() on any files being opened,
including files that the kernel opens internally.
This also lets us get rid of the explicit check for whether or not the returned
FileDescription was a preopen fd, and in fact, fixes a bug where a read-only
preopen fd without any other flags would be considered freshly opened (due to
O_RDONLY being indistinguishable from 0) and granted a new set of flags.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Symlink resolution is now a virtual method on an inode,
Inode::resolve_as_symlink(). The default implementation just reads the stored
inode contents, treats them as a path and calls through to VFS::resolve_path().
This will let us support other, magical files that appear to be plain old
symlinks but resolve to something else. This is particularly useful for ProcFS.