Add a basic NVMe driver support to serenity
based on NVMe spec 1.4.
The driver can support multiple NVMe drives (subsystems).
But in a NVMe drive, the driver can support one controller
with multiple namespaces.
Each core will get a separate NVMe Queue.
As the system lacks MSI support, PIN based interrupts are
used for IO.
Tested the NVMe support by replacing IDE driver
with the NVMe driver :^)
Unlike most data in the CLDR, hour cycles are not stored on a per-locale
basis. Instead, they are keyed by a string that is usually a region, but
sometimes is a locale. Therefore, given a locale, to determine the hour
cycles for that locale, we:
1. Check if the locale itself is assigned hour cycles.
2. If the locale has a region, check if that region is assigned hour
cycles.
3. Otherwise, maximize that locale, and if the maximized locale has
a region, check if that region is assigned hour cycles.
4. If the above all fail, fallback to the "001" region.
Further, each locale's default hour cycle is the first assigned hour
cycle.
Similar to number formatting, the data for date-time formatting will be
located in its own generated file. This extracts the cldr-dates package
from the CLDR and sets up the generator plumbing to create the date-time
data files.
The serenity_install_sources function now infers the path under
`/usr/src/serenity` in which to install the source files according to
the relative path of the source files in the repository.
For example `Userland/Libraries/LibGUI/Widget.h` gets installed at
`/usr/src/serenity/Userland/Libraries/LibGUI/Widget.h`.
This fixes cases where the source files of libraries are not under
`Userland/Libraries` (for example LibShell & LibLanguageServer).
For example, there isn't a unique set of data for the en-US locale;
rather, it defaults to the data for the en locale. See this commit for
much more detail: 357c97dfa8
libc++ uses a Pthread condition variable in one of its initialization
functions. This means that Pthread forwarding has to be set up in LibC
before libc++ can be initialized. Also, because LibPthread is written in
C++, (at least some) parts of the C++ standard library have to be linked
against it.
This is a circular dependency, which means that the order in which these
two libraries' initialization functions are called is undefined. In some
cases, libc++ will come first, which will then trigger an assert due to
the missing Pthread forwarding.
This issue isn't necessarily unique to LibPthread, as all libraries that
libc++ depends on exhibit the same circular dependency issue.
The reason why this issue didn't affect the GNU toolchain is that
libstdc++ is always linked statically. If we were to change that, I
believe that we would run into the same issue.
This allows libraries and binaries to explicitly link against
`<library>.so.serenity`, which avoids some confusion if there are other
libraries with the same name, such as OpenSSL's `libcrypto`.
This commit updates the Clang toolchain's version to 13.0.0, which comes
with better C++20 support and improved handling of new features by
clang-format. Due to the newly enabled `-Bsymbolic-functions` flag, our
Clang binaries will only be 2-4% slower than if we dynamically linked
them, but we save hundreds of megabytes of disk space.
The `BuildClang.sh` script has been reworked to build the entire
toolchain in just three steps: one for the compiler, one for GNU
binutils, and one for the runtime libraries. This reduces the complexity
of the build script, and will allow us to modify the CI configuration to
only rebuild the libraries when our libc headers change.
Most of the compile flags have been moved out to a separate CMake cache
file, similarly to how the Android and Fuchsia toolchains are
implemented within the LLVM repo. This provides a nicer interface than
the heaps of command-line arguments.
We no longer build separate toolchains for each architecture, as the
same Clang binary can compile code for multiple targets.
The horrible mess that `SERENITY_CLANG_ARCH` was, has been removed in
this commit. Clang happily accepts an `i686-pc-serenity` target triple,
which matches what our GCC toolchain accepts.
Until we're confident that RequestServer doesn't need this runtime debug
dump helper, it's much nicer if everyone has it built in, so they can
simply send a SIGINFO if they see it acting up.
Otherwise we'd end up trying to delete the wrong connection if a
connection made before us is deleted.
Fixes _some_ RequestServer spins (though not all...).
This commit also adds a small debug mechanism to RequestServer (which
can be enabled by turning REQUEST_SERVER_DEBUG on), that can dump all
the current active connections in the cache, what they're doing, and how
long they've been doing that by sending it a SIGINFO.
This requires exposing the `configure` step on the `serenity`
ExternalProject in the SuperBuild CMakeLists so that we can continue to
only build the generated sources and not the entire OS.
Replace the old logic where we would start with a host build, and swap
all the CMake compiler and target variables underneath it to trick
CMake into building for Serenity after we configured and built the Lagom
code generators.
The SuperBuild creates two ExternalProjects, one for Lagom and one for
Serenity. The Serenity project depends on the install stage for the
Lagom build. The SuperBuild also generates a CMakeToolchain file for the
Serenity build to use that replaces the old toolchain file that was only
used for Ports.
To ensure that code generators are rebuilt when core libraries such as
AK and LibCore are modified, developers will need to direct their manual
`ninja` invocations to the SuperBuild's binary directory instead of the
Serenity binary directory.
This commit includes warning coalescing and option style cleanup for the
affected CMakeLists in the Kernel, top level, and runtime support
libraries. A large part of the cleanup is replacing USE_CLANG_TOOLCHAIN
with the proper CMAKE_CXX_COMPILER_ID variable, which will no longer be
confused by a host clang compiler.
This common strategy of having a serenity_option() macro defined in
either the Lagom or top level CMakeLists.txt allows us to do two things:
First, we can more clearly see which options are Serenity-specific,
Lagom-specific, or common between the target and host builds.
Second, it enables the upcoming SuperBuild changes to set() the options
in the SuperBuild's CMake cache and forward each target's options to the
corresponding ExternalProject.
There are a few violations with signal handling that I won't be able to
fix it until later this week. So lets put lock rank enforcement under a
debug option for now so other folks don't hit these crashes until rank
enforcement is more fleshed out.
This is needed so all headers and files exist on disk, so that
the sonar cloud analyzer can find them when executing the compilation
commands contained in compile_commands.json, without actually building.
Co-authored-by: Andrew Kaster <akaster@serenityos.org>
This should help prevent deadlocks where a thread blocks on a Mutex
while interrupts are disabled, and makes it impossible for the holder of
the Mutex to make forward progress because it cannot be scheduled in.
Hide it behind a new debug macro LOCK_IN_CRITICAL_DEBUG for now, because
Ext2FS takes a series of Mutexes from the page fault handler, which
executes with interrupts disabled.
This allows us to remove all the add_subdirectory calls from the top
level CMakeLists.txt that referred to targets linking LagomCore.
Segregating the host tools and Serenity targets helps us get to a place
where the main Serenity build can simply use a CMake toolchain file
rather than swapping all the compiler/sysroot variables after building
host libraries and tools.
Moving this helper CMake file to the centralized Meta/CMake folder helps
to get a better grasp on what extra files are required for the build,
and what files are generated.
While we're at it, don't use add_compile_definitions for
ENABLE_UNICODE_DATA, which only needs to be seen by LibUnicode sources.
By using SerenityOS_SOURCE_DIR we can make custom targets and commands
agnostic to the actual location of the root CMakeLists directory.
All we care about is the root of the SerenityOS project.
compile_gml, compile_ipc, and generate_state_machine all use host
tools to generate sources for the target build. As part of trying to
organize host tools into a common area, let's move these helper rules to
a common file that we can add other host tools to later. And, keep the
host tool helpers separate from the CMake target helpers for apps and
libraries.