This removes a set of complex reference cycles between DOM, layout tree
and browsing context.
It also makes lifetimes much easier to reason about, as the DOM and
layout trees are now free to keep each other alive.
(And BrowsingContextGroup had to come along for the ride as well.)
This solves a number of nasty reference cycles between browsing
contexts, history items, and their documents.
This prevents a reference cycle between a HTMLParser opened via
document.open() and the document. It was one of many things keeping
some documents alive indefinitely.
When a new document becomes the active document of a browsing context,
we now notify the old document, allowing it to tear down its layout
tree. In the future, there might be more cleanups we'd like to do here.
These classes only needed Window to get at its realm. Pass a realm
directly to construct DOM and WebIDL classes.
This change importantly removes the guarantee that a Document will
always have a non-null Window object. Only Documents created by a
BrowsingContext will have a non-null Window object. Documents created by
for example, DocumentFragment, will not have a Window (soon).
This incremental commit leaves some workarounds in place to keep other
parts of the code building.
We now implement the browsing context's "set active document" algorithm
from the spec, as well as the "discard" algorithm for browsing contexts
and documents.
We can now "update the visibility state", which also causes
`visibilitychange` events to fire on the document.
This still needs GUI integration work at the BrowsingContext level.
The document.domain setter is currently stubbed as that is a doozy to
implement, given how much restrictions there are in place to try and
prevent use of it and potential multi-process implications.
This was the only thing preventing us from being able to start
displaying ads delivered via Google Syndication.
Instead of using Core::EventLoop and Core::Timer directly, LibWeb now
goes through a Web::Platform abstraction layer instead.
This will allow us to plug in Qt's event loop (and QTimer) over in
Ladybird, to avoid having to deal with multiple event loops.
This is a monster patch that turns all EventTargets into GC-allocated
PlatformObjects. Their C++ wrapper classes are removed, and the LibJS
garbage collector is now responsible for their lifetimes.
There's a fair amount of hacks and band-aids in this patch, and we'll
have a lot of cleanup to do after this.
This patch moves the following things to being GC-allocated:
- Bindings::CallbackType
- HTML::EventHandler
- DOM::IDLEventListener
- DOM::DOMEventListener
- DOM::NodeFilter
Note that we only use PlatformObject for things that might be exposed
to web content. Anything that is only used internally inherits directly
from JS::Cell instead, making them a bit more lightweight.
This patch implements the "create a new browsing context" function from
the HTML spec and replaces our existing logic with it.
The big difference is that browsing contexts now initially navigate to
"about:blank" instead of starting out in a strange "empty" state.
This makes it possible for websites to create a new iframe and start
scripting inside it right away, without having to load an URL into it.
The way we've been creating DOM::Document has been pretty far from what
the spec tells us to do, and this is a first big step towards getting us
closer to spec.
The new Document::create_and_initialize() is called by FrameLoader after
loading a "text/html" resource.
We create the JS Realm and the Window object when creating the Document
(previously, we'd do it on first access to Document::interpreter().)
The realm execution context is owned by the Environment Settings Object.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
Instead, put them in a Vector<OwnPtr<NodeState>>. Each layout node
has a unique index into the vector. It's a simple serial ID assigned
during layout tree construction. Every new layout restarts the sequence
at 0 for the next ICB.
This is a huge layout speed improvement on all content.