The current implementation of `:has()` style invalidation is divided
into two cases:
- When used in subject position (e.g., `.a:has(.b)`).
- When in a non-subject position (e.g., `.a > .b:has(.c)`).
This change focuses on improving the first case. For non-subject usage,
we still perform a full tree traversal and invalidate all elements
affected by the `:has()` pseudo-class invalidation set.
We already optimize subject `:has()` invalidations by limiting
invalidated elements to ones that were tested against `has()` selectors
during selector matching. However, selectors like `div:has(.a)`
currently cause every div element in the document to be invalidated.
By modifying the invalidation traversal to consider only ancestor nodes
(and, optionally, their siblings), we can drastically reduce the number
of invalidated elements for broad selectors like the example above.
On Discord, when scrolling through message history, this change allows
to reduce number of invalidated elements from ~1k to ~5.
Before this change, tasks associated with a destroyed document would get
stuck in the task queue forever, since document-associated tasks are not
allowed to run when their document isn't fully active (and destroyed
documents never become fully active again). This caused everything
captured by task callbacks to leak.
We now treat tasks for destroyed documents as runnable immediately,
which gets them out of the queue.
This fixes another massive GC leak on Speedometer.
Before this change, `m_needs_repaint` was reset in
`Document::record_display_list()` only when the cached display list was
absent. This meant that if the last triggered repaint used the cached
display list, we would keep repainting indefinitely until the display
list was invalidated (We schedule a task that checks if repainting is
required 60/s).
This change also moves `m_needs_repaint` from Document to
TraversableNavigable as we only ever need to repaint a document that
belongs to traversable.
...until Document::update_style(). This allows to avoid doing full
document DOM tree traversal on each Node::invalidate_style() call.
Fixes performance regression on wpt.fyi
We do not fire `beforeinput` events since other browsers do not seem to
do so either.
The spec asks us to check whether a command's action modified the DOM
tree. This means adding or removing nodes and attributes, or changing
character data anywhere in the tree. We have
`Document::dom_tree_version()` for node updates, but for character data
a new version number is introduced that allows us to easily keep track
of any text changes in the entire tree.
DOM nodes now have two additional flags:
- Needs layout tree update
- Child needs layout tree update
These work similarly to the needs-style-update flags, but instead signal
the need to rebuild the corresponding part of the layout tree.
When a specific DOM node needs a layout tree update, we try to create
a new subtree starting at that node, and then replace the subtree in the
old layout tree with the newly created subtree.
This required some refactoring in TreeBuilder so that we can skip over
entire subtrees during a tree update.
Note that no partial updates happen yet (as of this commit) since we
always invalidate the full layout tree still. That will change in the
next commit.
Previously, we optimized hover style invalidation to mark for style
updates only those elements that were matched by :hover selectors in the
last style calculation.
This change takes it a step further by invalidating only the elements
where the set of selectors that use :hover changes after hovered element
is modified. The implementation is as follows:
1. Collect all elements whose styles might be affected by a change in
the hovered element.
2. Retrieve a list of all selectors that use :hover.
3. Test each selector against each element and record which selectors
match.
4. Update m_hovered_node to the newly hovered element.
5. Repeat step 3.
6. For each element, compare the previous and current sets of matched
selectors. If they differ, mark the element for style recalculation.
Instead of storing all storage objects in static memory, we now
follow the the spec by lazily creating a unique Storage object
on each document object.
Each Storage object now holds a 'proxy' to the underlying backing
storage. For now, this proxy is simply a reference to the backing
object. In the future, it will need to be some type of interface
object that stores on a SQLite database or similar.
Session storage is now correctly stored / tracked as part of the
TraversableNavigable object.
Local storage is still stored in a static map, but eventually this
should be factored into something that is stored at the user agent
level.
We currently (sometimes) copy the observer map to a vector for iteration
to ensure we are not iterating over the map if the callback happens to
remove the observer. But that list was not protected from GC.
This patch ensures we protect that list, and makes all document observer
notifiers protected from removal during iteration.
There are essentially 3 URL parsing AOs defined by the spec:
1. Parse a URL
2. Encoding parse a URL
3. Encoding parse a URL and serialize the result
Further, these are replicated between the Document and the ESO.
This patch defines these methods in accordance with the spec and updates
existing users to invoke the correct method. In places where the correct
method is ambiguous, we use the encoding parser to preserve existing ad-
hoc behavior.
The DOM spec defines what it means for an element to be an "editing
host", and the Editing spec does the same for the "editable" concept.
Replace our `Node::is_editable()` implementation with these
spec-compliant algorithms.
An editing host is an element that has the properties to make its
contents effectively editable. Editable elements are descendants of an
editing host. Concepts like the inheritable contenteditable attribute
are propagated through the editable algorithm.
To facilitate the implementation of "delete" and all associated
algorithms, split off this piece of `Document` into a separate
directory.
This sets up the infrastructure for arbitrary commands to be supported.
This is required by mini Cloudflare invisible challenges, as it will
only run if the readyState is not "loading". If it is "loading", then
it waits for readystatechange to check that it's not "loading" anymore.
Initial about:blank iframes do not go through the full navigation and
thus don't go through HTMLParser::the_end, which sets the ready state
to something other than "loading". Therefore, the challenge would never
run, as readyState would never change.
Seen on https://discord.com/login
Resulting in a massive rename across almost everywhere! Alongside the
namespace change, we now have the following names:
* JS::NonnullGCPtr -> GC::Ref
* JS::GCPtr -> GC::Ptr
* JS::HeapFunction -> GC::Function
* JS::CellImpl -> GC::Cell
* JS::Handle -> GC::Root
Instead of doing a forced layout synchronously whenever an element's
style is changed, use a zero-timer to do the forced relayout on next
event loop iteration.
This effectively coalesces a lot of layouts and makes many pages such
as GitHub spend way less time doing redundant layout work.
The StyleResolver can find the specified CSS values for the parent
element via the DOM. Forcing everyone to locate specified values for
their parent was completely unnecessary.
Now that we have RTTI in userspace, we can do away with all this manual
hackery and use dynamic_cast.
We keep the is<T> and downcast<T> helpers since they still provide good
readability improvements. Note that unlike dynamic_cast<T>, downcast<T>
does not fail in a recoverable way, but will assert if the object being
casted is not a T.
Note that we're taking a shortcut here and returning the elements as an
Array instead of HTMLCollection. One day we'll have to bite the bullet
and deal with HTMLCollection, but not today.
Specification: https://dom.spec.whatwg.org/#concept-event-dispatch
This also introduces shadow roots due to it being a requirement of
the event dispatcher.
However, it does not introduce the full shadow DOM, that can be
left for future work.
This changes some event dispatches which require certain attributes
to be initialised to a value.