Where it belongs, alongside the /etc/hosts check. The inner lookup() method is
really about talking to a specific DNS server.
Also, don't bail out on a empty name. An empty DNSName is actually '.' — a
single dot — aka the DNS root.
...just like we store m_lookup_cache, in other words.
This immediately lets us match on types: for instance we will now only resolve
1.0.0.127.in-addr.arpa to localhost if asked for type PTR, not for type A. In
the future, this could also let us have the same /etc/hosts name resolve
to *multiple* addresses.
DNSName can now take care of case conversion when comparing using traits.
It still intentionally doesn't implement operator ==; you have to explicitly
decide whether you want case-sensitive or case-insensitive comparison.
This change makes caches (and /etc/hosts) case-transparent: we will now match
domains if they're the same except for the case.
* DNSName knows how to randomize itself
* DNSPacket no longer constructs DNSQuestion instances, it receives an already
built DNSQuestion and just adds it to the list
* LookupServer::lookup() explicitly calls randomize_case() if it needs to
randomize the case.
This is a wrapper around a string representing a domain name (such as
"example.com"). It never has a trailing dot.
For now, this class doesn't do much except wrap the raw string. Subsequent
commits will add or move more functionality to it.
This adds a new structure 'Typeface' to the FontDatabase that
represents all fonts of the same family and variant.
It can contain a list of BitmapFonts with varying size but of
the same family and weight or a pointer to a single TTF font
for all sizes of this Typeface.
In the majority of cases we want to force callers to observe the
result of a blocking operation as it's not grantee to succeed as
they expect. Mark BlockResult as [[nodiscard]] to force any callers
to observe the result of the blocking operation.
In preparation for marking BlockingResult [[nodiscard]], there are a few
places that perform infinite waits, which we never observe the result of
the wait. Instead of suppressing them, add an alternate function which
returns void when performing and infinite wait.
We now follow a common capitalization throughout the project:
./Ports/openssh/ReadMe.md
./Ports/python3/patches/ReadMe.md
./Ports/ReadMe.md
./Meta/Lagom/ReadMe.md
./ReadMe.md
This filename is still obvious enough to be seen immediately.
You can now use the READONLY_AFTER_INIT macro when declaring a variable
and we will put it in a special ".ro_after_init" section in the kernel.
Data in that section remains writable during the boot and init process,
and is then marked read-only just before launching the SystemServer.
This is based on an idea from the Linux kernel. :^)
Currently, graphs are defined in terms of graph color. This means that
when the system palette is changed, the old colors are still used. We
switch to storing the color roles and looking up the palette colors on
paint events. We also define the graph line background color as the
graph color at half-transparency.
Since kernel stacks are much smaller (64 KiB) than userspace stacks,
we only add a small bit of randomness here (0-256 bytes, 16b aligned.)
This makes the location of the task context switch buffer not be
100% predictable. Note that we still also add extra randomness upon
syscall entry, so this patch primarily affects context switching.
This patch adds a random offset between 0 and 4096 to the initial
stack pointer in new processes. Since the stack has to be 16-byte
aligned, the bottom bits can't be randomized.
Yet another thing to make things less predictable. :^)
We were doing stack and syscall-origin region validations before
taking the big process lock. There was a window of time where those
regions could then be unmapped/remapped by another thread before we
proceed with our syscall.
This patch closes that window, and makes sys$get_stack_bounds() rely
on the fact that we now know the userspace stack pointer to be valid.
Thanks to @BenWiederhake for spotting this! :^)