Rather than printing them to stderr directly the parser now keeps a
Vector<Error>, which allows the "owner" of the parser to consume them
individually after parsing.
The Error struct has a message, line number, column number and a
to_string() helper function to format this information into a meaningful
error message.
The Function() constructor will now include an error message when
throwing a SyntaxError.
Giving the lexer the ability to generate errors adds unnecessary
complexity - also it only calls its syntax_error() function in one place
anyway ("unterminated string literal"). But since the lexer *also* emits
tokens like Eof or UnterminatedStringLiteral, it should be up to the
consumer of these tokens to decide what to do.
Also remove the option to not print errors to stderr as that's not
relevant anymore.
Adds fully functioning template literals. Because template literals
contain expressions, most of the work has to be done in the Lexer rather
than the Parser. And because of the complexity of template literals
(expressions, nesting, escapes, etc), the Lexer needs to have some
template-related state.
When entering a new template literal, a TemplateLiteralStart token is
emitted. When inside a literal, all text will be parsed up until a '${'
or '`' (or EOF, but that's a syntax error) is seen, and then a
TemplateLiteralExprStart token is emitted. At this point, the Lexer
proceeds as normal, however it keeps track of the number of opening
and closing curly braces it has seen in order to determine the close
of the expression. Once it finds a matching curly brace for the '${',
a TemplateLiteralExprEnd token is emitted and the state is updated
accordingly.
When the Lexer is inside of a template literal, but not an expression,
and sees a '`', this must be the closing grave: a TemplateLiteralEnd
token is emitted.
The state required to correctly parse template strings consists of a
vector (for nesting) of two pieces of information: whether or not we
are in a template expression (as opposed to a template string); and
the count of the number of unmatched open curly braces we have seen
(only applicable if the Lexer is currently in a template expression).
TODO: Add support for template literal newlines in the JS REPL (this will
cause a syntax error currently):
> `foo
> bar`
'foo
bar'
Adds the ability for function arguments to have default values. This
works for standard functions as well as arrow functions. Default values
are not printed in a <function>.toString() call, as nodes cannot print
their source string representation.
Instead of having fprintf()s all over the place we can now use
syntax_error("message") or syntax_error("message", line, column).
This takes care of a consistent format, appending a newline and getting
the line number and column of the current token if the last two params
are omitted.
"var" declarations are hoisted to the nearest function scope, while
"let" and "const" are hoisted to the nearest block scope.
This is done by the parser, which keeps two scope stacks, one stack
for the current var scope and one for the current let/const scope.
When the interpreter enters a scope, we walk all of the declarations
and insert them into the variable environment.
We don't support the temporal dead zone for let/const yet.
These functions allow us to try to parse ambiguous expressions (such as
arrow function arguments in parentheses), and
rewind the state of the Parser if an expression candidate failed to
parse.
NewExpression mostly piggybacks on the existing CallExpression. The big
difference is that "new" creates a new Object and passes it as |this|
to the callee.
You can now throw an expression to the nearest catcher! :^)
To support throwing arbitrary values, I added an Exception class that
sits as a wrapper around whatever is thrown. In the future it will be
a logical place to store a call stack.
FunctionExpression is mostly like FunctionDeclaration, except the name
is optional. Share the parsing logic in parse_function_node<NodeType>.
This allows us to do nice things like:
document.addEventListener("DOMContentLoaded", function() {
alert("Hello friends!");
});
This adds a basic Javascript lexer and parser. It can parse the
currently existing demo programs. More work needs to be done to
turn it into a complete parser than can parse arbitrary JS Code.
The lexer outputs tokens with preceeding whitespace and comments
in the trivia member. This should allow us to generate the exact
source code by concatenating the generated tokens.
The parser is written in a way that it always returns a complete
syntax tree. Error conditions are represented as nodes in the
tree. This simplifies the code and allows it to be used as an
early stage parser, e.g for parsing JS documents in an IDE while
editing the source code.: