If the 2D transform in effect is just a simple translation, we don't
need to draw into a temporary bitmap and then transform it. We can
just translate the painter. :^)
This fixes an edge case, where the destination rect falls partly
outside the painter, so is clipped to a smaller size in
`get_region_bitmap()` (which needs to be accounted for with an extra
offset).
This now copies the area under the destination to a new bitmap, that
is then scaled to the size of the source. The element is then painted
into that bitmap, which is then scaled and painted back to
the destination. This is done as many effects such as shadows, border
radii, filters, etc require being able to read pixels from the painter.
This does work (and is not that noticeable in many cases), but it does
mean there may be a few scaling artifacts in the background
around transformed elements. Though that was already the case before
anyway for the elements (since it is just a bitmap scale).
What we really want is to (where possible) just scale the paintable
and its descendants, then paint things normally, which would give
much nicer results (but is much more tricky to achieve).
This also now makes it so only a bitmap of the size of the paintable is
copied/created, rather than the whole page.
When mousing over twitter, 17% of time was spent computing stacking
context transform origins. Since this never changes after the stacking
context is created, we can cache it and avoid all that work.
63c727a was meant to stop clipping absolutely positioned descendants,
but used `is_positioned()` rather than `is_absolutely_positioned()`,
which meant it disabled clipping in many more cases that it should
have.
This is mainly so we can easily read that matrix later, but also has the
benefit of only calculating the matrix once, instead of every time we
paint. :^)
Also, made the `reference_length` parameter optional for the lambda that
extracts transform-function parameters, since it is only needed to
resolve `LengthPercentage` parameters.
This now calls before/after_child_paint() on the parent paintable
of a positioned child. This allows the parent's overflow clipping
to apply to the child.
Previously, before/after_children_paint() was only called for the
"Foreground" paint phase, this meant the backgrounds and other
features of child nodes of a element with overflow: hidden were
not clipped.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
When cloning the PaintContext we should be using the painter backed by
the bitmap created for this stacking context layer.
Fixes: 54c3053bc3 ("LibWeb: Preserve paint state when painting...")
For layers that require indirect painting (due to opacity, transform,
etc.) we create a nested PaintContext. Until now, that PaintContext
was created fresh without transferring all the state from the parent
PaintContext.
This replaces the usage of `rounded_int_rect`, whose name did not
accurately reflect the rounding operation happening. For example, the
position of the rect was not rounded but floored, and the size was
pulled through `roundf` before casting to `int` which could result in
inadvertent flooring if the resulting floating point could not exactly
represent the rounded value.
We already walk the entire paint tree within each stacking context in
the main hit testing function (StackingContext::hit_test()), so there's
no need for each individual paintable to walk its own children again.
By not doing that, we remove a source of O(n^2) traversal which made hit
testing on deeply nested web pages unbearably slow.
For stacking contexts that have opacity between 0 and 1, and also
contexts with a 2D transform, we first paint them into a temporary layer
buffer. Then we blend that buffer with the contents in one go.
Before this patch, we were only drawing the content box of the stacking
context into this layer buffer, which led to padding and borders missing
from elements painted this way.
Since there is currently no easy way to handle rotations and skews
with LibGfx this only implements translation and scaling by first
constructing a general 4x4 transformation matrix like outlined in
the css-transforms-1 specification. This is then downgraded to a
Gfx::AffineTransform in order to transform the destination rectangle
used with draw_scaled_bitmap()
While rotation would be nice this already looks pretty good :^)
By the time we're painting, we've already built the stacking context
tree. So instead of asking if a box establishes a stacking context, we
can ask if its paintable *has* a stacking context.
This was taking up ~6% of the profile when mousing around on the HTML
specification. With this change, it disappears completely. :^)
Instead of calling quick_sort() every time a StackingContext child
is added to a parent, we now do a single pass of sorting work after the
full StackingContext tree has been built.
Before this change, the quick_sort() was ~13.5% of the profile while
hovering links on GitHub in the Browser. After the change, it's down to
~0.6%. Pretty good! :^)
Everything related to hit testing is better off using the painting tree.
The thing being mousemoved over is a paintable, so let's hand that out
directly instead of the corresponding layout node.
This patch adds a bunch of Paintable subclasses, each corresponding to
the Layout::Node subclasses that had a paint() override. All painting
logic is moved from layout nodes into their corresponding paintables.
Paintables are now created by asking a Layout::Box to produce one:
static NonnullOwnPtr<Paintable> Layout::Box::create_paintable()
Note that inline nodes still have their painting logic. Since they
are not boxes, and all paintables have a corresponding box, we'll need
to come up with some other solution for them.
The "paintable" state in Layout::Box was actually not safe to access
until after layout had been performed.
As a first step towards making this harder to mess up accidentally,
this patch moves painting information from Layout::Box to a new class:
Painting::Box. Every layout can have a corresponding paint box, and
it holds the final used metrics determined by layout.
The paint box is created and populated by FormattingState::commit().
I've also added DOM::Node::paint_box() as a convenient way to access
the paint box (if available) of a given DOM node.
Going forward, I believe this will allow us to better separate data
that belongs to layout vs painting, and also open up opportunities
for naturally invalidating caches in the paint box (since it's
reconstituted by every layout.)
There's a subtle difference here. A "block box" in the spec is a
block-level box, while a "block container" is a box whose children are
either all inline-level boxes in an IFC, or all block-level boxes
participating in a BFC.
Notably, an "inline-block" box is a "block container" but not a "block
box" since it is itself inline-level.