More work on decoupling the general runtime from Interpreter. The goal
is becoming clearer. Interpreter should be one possible way to execute
code inside a VM. In the future we might have other ways :^)
Okay, my vision here is improving. Interpreter should be a thing that
executes an AST. The scope stack is irrelevant to the VM proper,
so we can move that to the Interpreter. Same with execute_statement().
This patch moves the exception state, call stack and scope stack from
Interpreter to VM. I'm doing this to help myself discover what the
split between Interpreter and VM should be, by shuffling things around
and seeing what falls where.
With these changes, we no longer have a persistent lexical environment
for the current global object on the Interpreter's call stack. Instead,
we push/pop that environment on Interpreter::run() enter/exit.
Since it should only be used to find the global "this", and not for
variable storage (that goes directly into the global object instead!),
I had to insert some short-circuiting when walking the environment
parent chain during variable lookup.
Note that this is a "stepping stone" commit, not a final design.
This fixes two cases obj[expr] and obj[expr]() (MemberExpression and
CallExpression respectively) when expr throws an exception and results
in an empty value, causing a crash by passing the invalid PropertyName
created by computed_property_name() to Object::get() without checking it
first.
Fixes#3459.
This fixes two issues with running a TryStatement finalizer:
- Temporarily store and clear the exception, if any, so we can run the
finalizer block statement without it getting in our way, which could
have unexpected side effects otherwise (and will likely return early
somewhere).
- Stop unwinding so more than one child node of the finalizer
BlockStatement is executed if an exception has been thrown previously
(which would have called unwind(ScopeType::Try)). Re-throwing as
described above ensures we still unwind after the finalizer, if
necessary.
Also add some tests specifically for try/catch/finally blocks, we
didn't have any!
Interpreter::run() was so far being used both as the "public API entry
point" for running a JS::Program as well as internally to execute
JS::Statement|s of all kinds - this is now more distinctly separated.
A program as returned by the parser is still going through run(), which
is responsible for creating the initial global call frame, but all other
statements are executed via execute_statement() directly.
Fixes#3437, a regression introduced by adding ASSERT(!exception()) to
run() without considering the effects that would have on internal usage.
The motivation for this change is twofold:
- Returning a JS::Value is misleading as one would expect it to carry
some meaningful information, like maybe the error object that's being
created, but in fact it is always empty. Supposedly to serve as a
shortcut for the common case of "throw and return empty value", but
that's just leading us to my second point.
- Inconsistent usage / coding style: as of this commit there are 114
uses of throw_exception() discarding its return value and 55 uses
directly returning the call result (in LibJS, not counting LibWeb);
with the first style often having a more explicit empty value (or
nullptr in some cases) return anyway.
One more line to always make the return value obvious is should be
worth it.
So now it's basically always these steps, which is already being used in
the majority of cases (as outlined above):
- Throw an exception. This mutates interpreter state by updating
m_exception and unwinding, but doesn't return anything.
- Let the caller explicitly return an empty value, nullptr or anything
else itself.
Finally use Symbol.iterator protocol in language features :) currently
only used in for-of loops and spread expressions, but will have more
uses later (Maps, Sets, Array.from, etc).
literal methods; add EnvrionmentRecord fields and methods to
LexicalEnvironment
Adding EnvrionmentRecord's fields and methods lets us throw an exception
when |this| is not initialized, which occurs when the super constructor
in a derived class has not yet been called, or when |this| has already
been initialized (the super constructor was already called).
This is a helper function based on the getter/setter definition logic from
ObjectExpression::execute() to look up an Accessor property if it already
exists, define a new Accessor property if it doesn't exist, and set the getter or
setter function on the Accessor.
This adds regex parsing/lexing, as well as a relatively empty
RegExpObject. The purpose of this patch is to allow the engine to not
get hung up on parsing regexes. This will aid in finding new syntax
errors (say, from google or twitter) without having to replace all of
their regexes first!
Includes all traps except the following: [[Call]], [[Construct]],
[[OwnPropertyKeys]].
An important implication of this commit is that any call to any virtual
Object method has the potential to throw an exception. These methods
were not checked in this commit -- a future commit will have to protect
these various method calls throughout the codebase.
When calling Object.defineProperty, there is now a difference between
omitting a descriptor attribute and specifying that it is false. For
example, "{}" and "{ configurable: false }" will have different
attribute values.
This patch adds function declaration hoisting. The mechanism
is similar to var hoisting. Hoisted function declarations are to be put
before the hoisted var declarations, hence they have to be treated
separately.
This patch adds an IndexedProperties object for storing indexed
properties within an Object. This accomplishes two goals: indexed
properties now have an associated descriptor, and objects now gracefully
handle sparse properties.
The IndexedProperties class is a wrapper around two other classes, one
for simple indexed properties storage, and one for general indexed
property storage. Simple indexed property storage is the common-case,
and is simply a vector of properties which all have attributes of
default_attributes (writable, enumerable, and configurable).
General indexed property storage is for a collection of indexed
properties where EITHER one or more properties have attributes other
than default_attributes OR there is a property with a large index (in
particular, large is '200' or higher).
Indexed properties are now treated relatively the same as storage within
the various Object methods. Additionally, there is a custom iterator
class for IndexedProperties which makes iteration easy. The iterator
skips empty values by default, but can be configured otherwise.
Likewise, it evaluates getters by default, but can be set not to.
Previously, the Object class had many different types of functions for
each action. For example: get_by_index, get(PropertyName),
get(FlyString). This is a bit verbose, so these methods have been
shortened to simply use the PropertyName structure. The methods then
internally call _by_index if necessary. Note that the _by_index
have been made private to enforce this change.
Secondly, a clear distinction has been made between "putting" and
"defining" an object property. "Putting" should mean modifying a
(potentially) already existing property. This is akin to doing "a.b =
'foo'".
This implies two things about put operations:
- They will search the prototype chain for setters and call them, if
necessary.
- If no property exists with a particular key, the put operation
should create a new property with the default attributes
(configurable, writable, and enumerable).
In contrast, "defining" a property should completely overwrite any
existing value without calling setters (if that property is
configurable, of course).
Thus, all of the many JS objects have had any "put" calls changed to
"define_property" calls. Additionally, "put_native_function" and
"put_native_property" have had their "put" replaced with "define".
Finally, "put_own_property" has been made private, as all necessary
functionality should be exposed with the put and define_property
methods.
This changes Accessor's m_{getter,setter} from Value to Function* which
seems like a better API to me - a getter/setter must either be a
function or missing, and the creation of an accessor with other values
must be prevented by the parser and Object.defineProperty() anyway.
Also add Accessor::set_{getter,setter}() so we can reuse an already
created accessor when evaluating an ObjectExpression with getter/setter
shorthand syntax.
As these parameter-less overloads don't change the value's type and
just assume Type::Number, naming them as_i32() and as_size_t() is more
appropriate.